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Abstract

Based on ideas of W.M. Tulczyjew, a geometric framework for a frame-independent formulation
of different problems in analytical mechanics is developed. In this approach affine bundles replace
vector bundles of the standard description and functions are replaced by sections of certain affine
line bundles called AV-bundles. Categorial constructions for affine and special affine bundles as
well as natural analogs of Lie algebroid structures on affine bundles (Lie affgebroids) are inves-
tigated. One discovers certain Lie algebroids and Lie affgebroids canonically associated with an
AV-bundle which are closely related to affine analogs of Poisson and Jacobi structures. Homology
and cohomology of the latter are canonically defined. The developed concepts are applied in solving
some problems of frame-independent geometric description of mechanical systems.
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1. Introduction

While there is no doubt about the role of analytical mechanics in explaining many prob-
lems in a variety of physical topics, it is worth stressing that classical mechanics is by no
meanspasse It is still an open theory with several challenges and with an influence on
both: physics and mathematics. The standard formulation of analytical mechanics in the
language of differential geometry is based on geometrical objects of vector character. The
vector bundleT M of tangent vectors is used as a space of infinitesimal (dynamical) con-
figurations, the vector bundl& M of covectors plays the role of a phase space, and the
Poisson bracket derived from the symplectic form serve in the Hamiltonian formulation of
dynamics in which one uses the vector space (actually an algebra) of functions. However,
there are situations where one finds difficulties while working with vector-like objects. Here
we list some examples.

1. Asthe first example we describe the problems in the relativistic mechanics of a charged
particle in the external electromagnetic field. The standard Lagrargiara function
on the space of infinitesimal configurationa/ : L(v) = —(eA v) +m+/g(v, v), where
A is the one-form representing the electromagnetic potemtiaf the mass and is
the charge of the particle. The Lagrangian depends on the gauge of the first type. An
electromagnetic potential is a connection in the principal bundle with the structure group
(R, 4+) over the space—time. To obtain the one-form representing the potential one has
to choose a section of the bundle (gauge). Changes in the gauge lead to changes in the
Lagrangian. The gauge independent description is possible only when we use affine
objects.

2. The configuration space (the space of events) for the inhomogenous formulation of
time-dependent mechanics is the space—thé&brated over the tim®. First-jets of
this fibration form the infinitesimal configuration space. Since there is the distinguished
vector fieldd; on R, the first-jets of the fibration over time can be identified with those
vectors tangent td/ which project ord;. Such vectors form an affine subbundle of the
tangent bundl& M. The bundlev* M, dual to the bundle of vectors which are vertical
with respect to the fibration over time, is the phase space for the problem. The phase
space carries a canonical Poisson structure, but Hamiltonian fields for this structure are
vertical with respect to the projection on time, so they cannot describe the dynamics. In
the standard formulation the distinguished vector figlis added to the Hamiltonian
vector field to obtain the dynamics. This can be done correctly when the fibration over
time is trivial, i.e. whenM = Q x R. When the fibration is not trivial one has to choose
a reference vector field that projects odtoChanging the reference vector field means
changing the Hamiltonian. To have the description of the dynamic being independent on
the reference field one has to use affine objects.

3. Letuslook on energy and momentum in the most classical case of Newtonian mechanics.
The Newtonian space—time is a four-dimensional affine spaegth an absolute time
one-formt € (V(N))*, which is a linear function on the model vector spac#/). The
dynamicsis usually described in a fixed inertial frame. The inertial frames are represented
by vectorsu € V(N) such thatr(u) = 1, i.e.u is the space—time velocity of an inertial
observer associated with the inertial frame. The space of infinitesimal configurations, i.e.
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positions and velocities, ¥ x E1, whereE; C V(N) consists of vectors satisfying

7(v) = 1. Fixing an inertial frame: allows us to identifyE1 with Eg = Ker(t) which

is a vector subspace df(N). Therefore we can define momenta as elementgjo&
(V(N)*/(t). The momentum transforms according to the formplla= p + f(u, u’)

while changing the inertial frame. The transformation of energy is also affine, so we can-
not describe the dynamics in the frame-independent way as long as we keep representing
the momentum as a vector object. We need an affine object to replace the usual covector.
We can say that the covector in this case carries too much structure and we need additional
physical information (i.e. an inertial frame) to use it properly. But even in a fixed inertial
frame the standard description is not satisfactory, because the identificatianioth

Eg at the very beginning leads to the use of a wrong Poisson structure to generate equa-
tions of motion from the Hamiltonian. This is a situation similar to the previous example
(cf. [6,11)).

Of course, the above list of problems is not complete. Our aim is to develop the geo-
metric framework for correct approaches. The standard geometric constructions based on
the algebra of functions on a manifold are replaced by constructions based on the
affine space of sections of an affine bundle Z — M, modeled on the trivial bun-

dle M x R. Such an affine bundle we will call lundle of affine valueAV-bundlein

short). The elements of the bundlereplace number-values of functions but we are not
informed now what and where is zero for these values, so our “functions” do not form
any algebra or even a vector space. Such an approach forces deep changes in the lan-
guage, notions and canonical objects of differential geometry. We propose to call this
kind of geometrythe differential geometry of affine valuéav-differential geometryn

short).

An additional motivation comes from the observation that even canonical objects in the
traditional “vector geometry” happen to have an affine character, more or less hidden or
forgotten. Let us consider the canonical symplectic form on the cotangent buhiile
This 2-form is recognized as a linear object while, on the other hand, it is invariant with
respectto translations by closed forms on M that suggests its hidden affine character. Indeed,
it is possible to construct an affine analogTdfM, which is a symplectic manifold with
canonical symplectic structure and which seems to be more appropriate phase space for
many mechanical problems.

The idea of using affine bundles for the correct frame-independent geometric formulation
of analytical mechanics theories goes back to some concepts of TulcRi¢\isee also
[1,22,24). We will also use in the paper some of unpublished ideas of W.M. Tulczyjew. A
similar approach to time-dependent non-relativistic mechanics (in the Lagrange formula-
tion) has been recently developed by Massa €tl&l16,26] Martinez et al[12—14] Our
paper is organized as follows.

In Section 2we present basic notions of the theory of affine spaces and relations to the
theories of special (resp., cospecial) vector spaces, i.e. the vector spaces with distinguished
a non-zero vector (resp., covector).

Basic categorial construction for affine spaces and special/cospecial vector spaces, like
direct sums, products, and tensor products, are presengsttion 3 To our surprise, we
could not find them in the literature.
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In Section 4 the main affine objects of our approach, nansggcial affine spacese.
affine spaces modeled on special vector spaces are introduced together with the correspond-
ing notion of special duality.

One-dimensional special affine spaces, caflpdces of affine scalaere of particular
interest. Some properties of such spaces are investigatetiion 5

All above is extended to the case of bundleSeéttions 6 and.7A special affine bundle
is a pairA = (A,v), whereA is an affine bundle oveM andv € Sec(V(A)) is a
nowhere-vanishing section of its model bun¥lied). Thedual special affine bundla® is
the affine bundléAff (A; I) of special affine morphisms &, into the canonical special
affine bundleM x I, wherel = (R, 1), i.e. those affine morphisms: A,, — R whose
linear part map®(m) into 1,m € M, with the distinguished section of the model vector
bundle being }—the constant 1 function oA.

One-dimensional special affine bundles are cafgebundles An important observa-
tion is that there is a one-to-one correspondence between the Spat&) of sections
of a special affine bundl& and the spacéff Sec(A#) of affine sections of the bundle
A#* — A#/(14) which is canonically an AV-bundle. The affine sections are, of course,
those sections : A#/(14) — A* which are affine maps, i.a. morphisms of affine bundles.
This is a special affine analog of the well-known correspondence between sections of a
vector bundleE and linear functions on the dual bundi&.

In Section &he phas®Z and the contact bund{&Z associated with an AV-bund®are
constructed. They are AV-analogs BfM andT*M & R and carry canonical symplectic
and contact structures, respectively. The AV-Liouville one-form which is the potential of the
canonical symplectic form oRZ is naturally understood as a section of an affine fibration
overPZ (cf. [25]).

Various Lie algebroids and Lie affgebroids (i.e. Lie algebroid-like objects on affine bun-
dles[2]) associated with a given AV-bundie are defined and studied Bections 9-1.1
Let us mention the Lie algebroifiZ (an AV-analog of the Lie algebroid extensia =
TM @ R of the canonical Lie algebroi@M of vector fields), the Lie algebroidZ (an
AV-analog of the Lie algebroid extensidnV/ & R of the Lie algebroid M = TM & R
of linear first-order differential operators d) and their affine Counterpari'sg andLZ.

One proves that the Lie algebrdi@ admits a canonical closed one-fogy i.e.LZ carries

a canonical structure of dacobi algebroid(see[4,5,10). It is also shown that sections

of TZ, or LZ, (resp., sections ofZ, or LZ) can be interpreted as affine derivations, or
affine first-order differential operators, on sectionsZoWwith values in functions o/
(resp., such derivations, or first-order differential operators, but with values in sections
onZz).

In Section 12we recall the definitions and basic facts on aff-Poisson and aff-Jacobi
brackets (cf[2]), i.e. analogs of Poisson and Jacobi brackets, defined on sections of an
AV-bundleZ over M and taking values in the ring of smooth functiafi® (M). The main
result is the correspondence between Lie affgebroid structures on a special affine bundle
A = (A, v) and aff-Jacobi brackets on the AV-bundié — A#/(1,) which are affine in
the sense that the bracket of two affine sections is an affine functiévf t14). This can
be viewed as an AV-analog of the fact that Lie algebroid brackets on a vector hblindle
correspond to linear Poisson brackets on the dual bufitllén this picture, the Lagrange
formulation of a mechanical problem takes place on a special affine bdnele(A, v)
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equipped with a Lie affgebroid structure, and the Lagrangians are sections of the AV-bundle
A — A/(v). The Hamilton formalism, in turn, takes place on the dual special affine bundle
A*# and the Hamiltonians are sections of the AV-bundfé — A¥/(14) which carries
a canonical aff-Jacobi structure. In most important examples this structure happens to be
aff-Poisson.

In Section 13we observe that aff-Poisson and aff-Jacobi structures on an AV-bundle
Z correspond taanonical structuresA and 7 for the Lie algebroidlZ and Jacobi alge-

broid LZ, respectively, i.eA € A?TZ, [A, A];, = O (resp..J € A%LZ, [, ﬂl‘f; =
0), where [, -]+, is the Lie algebroid Schouten bracket oNTZ (resp., [, -]I‘Ifj; is the

Schouten—Jacobi bracket of the Jacobi algeb¢bi#, ¢°)). This is an AV-analog of the
well-known identification of Poisson brackets 6f° (M) with Poisson tensors oM, i.e.
bivector fields with the Schouten—Nijenhuis square being 0. The known results on charac-
terization of canonical structures for Lie and Jacobi algebri&i@® allow one to derive an
analogous characterization for aff-Poisson and aff-Jacobi brackets. In particular, one can
define the corresponding homology and cohomology in a natural way.

In Section 14we present solutions of the mentioned problems of the frame-independent
geometric formulation in analytical mechanics with the use of developed concepts. These
solutions form an alternative to the Kaluza—Klein approach where the vector-like formula-
tions is kept for the price of extending the dimension (see[dl8@0,21]

Much of this material is to our knowledge new. Our aim was to present a possibly complete
picture which can be viewed as a well-described mathematical program based on the ideas
and needs from analytical mechanics.

2. Category of affine spaces

An affine spacés a triple(A, V, @), whereA is a set,V is a vector space over a field
ando is a mappingx : A x A — V such that

o «a(as, az) +alaz, a1) + alai, az) = 0;
e the mappingx(-, a) : A — V is bijective for eaclu € A.

We shall also write simply to denote the affine spacd, V, «) andV(A) to denoteV.
One can also say that an affine space is a set with a free and transitive action of a vector
space (which is viewed as a commutative group with respect to additionjirBgnsion
of A we understand the dimensiondfA). If (A, V, «) then also(A, V, —«) is an affine
space. We will write for brevityA to denote thedjoint affine spac€A, V, —«). We will
write alsoay — a1 instead ofx(az, a1) anda + v to denote the unique poiat € A such that
a —a=v,v € V(A). Of course, every vector space is canonically an affine space modeled
on itself with the affine structure(vy, v2) = v1 — v2. The adjoint affine spaca® can be
viewed as the same satwith the opposite action 0f (A): a — a — v.

It is easy to see that for any linear subspdgeof V the setA/Vp of cosets ofA with
respect to the relation ~ ¢’ < a — a’ € Vp is canonically an affine space modeled on
V/ Vo.
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A subsetA’ of A is anaffine subspaci A if there is a linear subspad& A’) of V(A)
such thatd’ = o’ + V(A’) for certaina’ € A’. Affine subspaces are canonically affine
spaces with the affine structure inherited frdm

If A”is an affine subspace df then the quotient space/A’ is understood ad /V(A’)
with distinguished point being the class4f HenceA /A’ can be identified with the linear
spaceV(A)/V(A)).

Morphisms in the category of affine spaces are affine mapst batlA’ be affine spaces.
We say that a mapping: A — A’ is affineif there is a linear mapping, : V — V' such
that

pla+v) = ¢(a) + ¢y (v).

We say that, is thelinear partof ¢.

More generally, on every affine space instead of the subtragtieniz, one can consider
vector combinatiorf elements of4, i.e. the combinatior}; A;a;, wherea; € A, 1; € K,
and); A; = 0. Every vector combination of elements 4fdefines a unique element of
V(A) in obvious way. Similarly, one can considsdfine combinationgalled alsdarycen-
tric combinationyof elements ofA which have formally the same form but wiph; A; = 1.

An affine combination determines uniquely an element oAffine maps may be equiva-
lently defined as those maps which respect affine combinations. Note however that affine
combinations do not determine the affine structure completelgnd A* have the same
affine combinations. The saff(A; A’) of all affine maps fromH into A’ is again an affine
space modeled on the vector spad& A; V(A')) of affine maps fromA into the model
vector spac/(A’) of A’: for 1, g2 € Aff(A1; An) we put(pr — ¢2)(a) = p1(a) — p2(a).
Inductively, the seAffk(Al, ..., Ag; A) of k-affine maps fromAd; x --- x A;into A is
defined as the sétff(Aq; Affk_l(Az, ..., Ag; A)). Like in the linear case, one proves that
Aff* (A4, ..., Ag; A) can be identified with the space of of maps A1 x --- x Ay > A

which are affine with respect to every variable separately. By

FiiA1px - xV(A}) x - x A = V(A)

we denote the linear part @f with respect to théth variable. It is linear orV(A4;) and
affine with respect to each of the remaining variables separately. The higher-order linear
partsFyt " are defined in obvious way. The multilinear map

FE % V(AL x -+ x V(A — V(A)

we denote simply by,.
A free affine spacel = A({a;}c,) generated by the sgt; : j € J}is an affine subspace
in the free vector space generatediby: j € J}, i.e. in the the vector spadé{a;} ;) of
formal linear combinations = ;4 ;a;, described by the equation ) = 1, where 1
is the linear functional o¥({a;} jc ;) defined by L (v) = Zj Xj. The notation is justified
by the fact that this functional is constantly 1 gh The model vector space for this free
affine space is a linear subspacelfa; : j € J}) being the kernel of the functionals1
Every affine spacd is actually isomorphic to the free affine space generated by a subset
of A which we call abasisof A. A subset{a; : j € J} is a basis ofA if every element of
A can be expressed uniquely as an affine combination of elements of the basis. Existence
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of a basis can be proved analogously to the linear case, gincej € J} is a basis ofA
ifand only if {a; — aj, : j € J'} is a basis oW (A), wherejo € J andJ = J \ {jo}. The
dimension ofA is the cardinality of a basis minus 1.

Every affine spacd is canonically embedded as an affine hyperspace into a vector space
A which we call thevector hullof A. The vector hullA is defined as the guotient space
V(A)/Vo(A) of the free vector spadéd(A) generated by by its subspace spanned by linear
combinations of the form 1(a + A(@’ — d”)) — 1-a — Ad’ + La”. Here the expression
(a+ A(d —d")) is viewed as an element @f. SinceA is canonically embedded ind(A)
as a set, we have a canonical map fraiimto A which can be proved to be an embedding of
the affine space onto affine hyperspage.e. a one-codimensional affine subspace which
is proper (does not contain 0), @f. This hyperspace can be equivalently defined as the
level-1 set of the functionalL: A — K represented by the sum of coefficients)om ).
We will not denote this embedding in a special way just regardirag a subset of. The
model vector spac¥(A) is also canonically embedded inas the kernel of 1.

Choosing a basifz; : j € J} of A we get an isomorphism of with V({{aj; . jeJ).
Note that for a vector space viewed as an affine space its vector hlis canonically
isomorphic toV @ K. This decomposition follows from the existence of a distinguished
elementO= V which is a non-zero vector ivi complementary tv/(V) ~ V. Itis obvious by
construction that the vector hull is unique up to isomorphism, so that we have the following
theorem.

Theorem 1. Every affine spacd is canonically embedded as an affine hyperspace of the
vector spacei—its vector hull. Converselyf A is embedded as an affine hyperspace of a
vector spaceéV, then there is a canonical isomorphisi: A — W which reduces to the
identity map on the embedded

For vector spaceg;, Vo> we denote byHom(Vy; V») the space of morphisms (linear maps)
from V7 into V» and byHomﬁi(Vl; Vo) the subset of those morphismbse Hom(Vy; V>)
which map the subset; of V; into the subse#i, of Va.

Theorem 2. For an affine spacd and a vector spac¥ there are canonical identifications

(a) Aff(A, V) 3 ¢ > @ € Hom(A, V). )

In particular, the vector spaceT = Aff(A, R) is canonically isomorphic td*, and
(b) Aff(A1, A2) 3 ¢ > § € Hom)?(A1, A2)

for affine spacedi, As.

Proof. We put simplyp(}_; Aiai) = > ; hip(a;) for A; € K, a; € A, sop = §j4. There are
obvious embeddings

Aff(A1, A2) C Aff(A1, Ap) C Hom(Aq, A2)

and itis easy to see thaff(A1, A») is characterized insidﬂom(Al, Ag) as the set of those
morphisms which map into Aj. O
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The vector spacd has a distinguished affine hyperspateSuch an affine subspace

|s unlquely determined by the nonzero functional & A* as its level-1 setA = {v €
: 14(v) = 1}. ThusA = (A4, 1,) is an example of @ospecial vector spaceé.e. a

vector space with a distinguished affine hyperspace, or, equivalently, as a vector space with
a distinguished non-zero linear functional. On the other hand, its vectorduathich is
canonically identified withAT = Aff(A, K), is aspecial vector spagé.e. a vector space
with a distinguished non-zero element. We will denote this special vector spaké by
(AT, 1,) and call it thevector dualof A. In finite dimension we have a true duality between
affine spaces and special vector spaces. Indeed, every special vectoVspac#, v°)
defines an affine hyperspavg = {u € V* : u(® = 1} in the dualvV* of V. Since in
finite dimension(V*)* = V, we have the following theorem.

Theorem 3. For finite-dimensional special vector spa¥eand finite-dimensional affine
spaceA there are canonical isomorphisms

(VHT 1y >V
and

AH ~ 4.

The vector hull ,&\ff(Al, Ap) of Aff(A1, A2) can be interpreted as the vector
spaceHom(A1, A,) of those linear map# : A1 — Ay for which F*(1a,) = Ala,
for certaini € K.

Special (resp., cospecial) vector spaces form a category with the set of morphisms
Hom(V1, V2) betweenV; = (V;, v?) (resp.V; = (Vi, ¢;)), i = 1, 2, consisting of those
linear mapsF : Vi — V; for which Fu9) = 9 (resp.,F*(¢2) = ¢1). The condition
F*(¢2) = 91 means tha# maps the points of the affine hyperspate= {¢1(u1) = 1}
of V1 into the affine hyperspacé, = {¢2(u2) = 1} of V. There is a canonical covariant
equivalence functor from the category of cospecial vector spaces into the category of affine
spaces. It associates with any cospecial vector spdcé) its affine hyperspacd, and
with every morphisn¥ : (V1, A1) — (Va, Ay) its restriction toA (which is an affine map
into A2). Conversely, with every affine spagewe associate its vector hull with A as
the distinguished affine hyperspace and with every affine fiapl; — A» its (unique)
extension to a linear map fromy into A». In finite dimensions we can use the duality and
obtain a contravariant equivalence functor from the category of special vector spaces to the
category of affine spaces. This functor associates with a special vector\spaa@’, v°)
the affine hyperspadé* in V*. We will use these equivalences to construct categorial object
for the affine category exploring (generally better) knowledge of the linear category.

3. Categorial constructionsfor affine spaces

In the category of special vector spaces and, consequently, in the category of cospe-
cial vector spaces and the category of affine spaces there are direct sums and products.
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We will just describe the models leaving the obvious proofs to the reader. The construc-
tions are very natural but, to our surprise, we could not find explicit references in the
literature.

For special vector spac&s = (V;, l) i =1,2,their productx/lxs"vz is represented
by the standard produ®t x V» with the distinguished vectaf = 1, v2) The projections
7 0 Vi x Vo — V; mapi® ont0v?, i.e. represent morphisms ofspeC|aI vector spaces.

Thespecial direcsumV 1V, is represented by the quotient vector speg® Vg/(v‘l)—

19) with the distinguished vector being the clas$] [of v9 (or, equivalently, the class§]
of v(z)). The embedding o¥; is represented by the embeddingWfin V1 & V>, composed
with the projection.

By duality, for cospecial vector spac¥s = (V;, <p?), i =1, 2, itscospecial direct sum

V18%V, is represented by the vector spaée® V, with the distinguished functional

0 = (¢9,¢9) € Vi x V§ = (V1 ® V»)* and obvious embeddings ;. The product
lecvvz, in turn, is represented by the linear hyperspac®inx V, being the kernel
of gal — goz e Vi ® V) = (V1 x V2)* and equipped with the distinguished functional
= (D) kerd—¢9) = (@2 ker(,0—y2)- The projections from Key? — ) onto V; are
jUSt restrictions of projections frorvrl x Va. They give rise to cospecial morphisms from
V1x%V5ontoV;.

The above constructions allow us to recognize the products and sums in the category
of affine spaces. Thaffine productA;x?A, in this category is the standard Cartesian
productA; x A which is an affine space modeleddtA1) x V(Ay), (al, az)—(ay, day) =
(a1 — al, az — a2) The direct sumA1“ A is the affine hyperspace ml @ Az generated
by the affine subspaces;, A> which are canonically embedded, i.e.

a A A
A1©Ay ={r1a1+ a2 € A1 @ Ap a1 € A1, a2 € Ap, M+ Ao =1},

with obvious embeddings of; andAs.

Theorem 4. We have canonical isomorphisms

T . v A
(A1xA2) >~ A1X A2, 1)
T ~ CU A
(A1 A2) >~ A1 A2, (2)
Sv
(Arx At ~ aloal, ®)
(A1BAn)T ~ ATxAT 4

where the vector hulls and the vector duals are regarded as cospecial and special vector
spacesrespectively

In the category of affine spaces we can defiffine tensor productgl1® - - - ®“ Ay
which are affine spaces such tmaffk(Al, oL A A) = Aff(A1®7 - - - ®%Ag; A). Like
in the linear cased1®“ - -- ®“A; can be defined as the quotient of the free affine space
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A(A1 x -+ x Ap) by the linear subspace of its model vector space generated by elements
of the form

@i, ... ai+xa —a)),...,a) — (a1, ... ,ai, ... ,ax) — rai, ... ,d;, ... ,ax)
+r(a, ..., a, ..., ap).

One can also say that;®“ - - - ®“ Ay is the affine subspace iy ® - - - ® Ax spanned by
tensors of the form; ® - - - ® ax, whereg; € A;. The tensor product1®? - - - @A, may be
viewed also as the affine hyperspace in the standard tensor pﬁbﬁgct -® Ax determined
by the functional }, ® - - - ® 14, and the associated vector spaiel 18 - - - ®“ Ay) is the
kernelof i, ®---®14,. Itis easy to see that(A1®“ - - - ®“ Ay) is additively generated by
tensorsn®- - -Qui®- - -Qay fromA1®- - -®Ak,whereaj € Aj,v; € V(A). Thisisindeed
avector space, Sine€a1® - - - v; Q- --Qay) isrepresentedby1 @ - - - QAv; ® - - - ® ag.-

If we fix a? € A;, then

A a a 0 0 0 X
1@...®Ak_al®-~-®ak+ @a1®®V(A11)®

ip<---<iy
V(A ® - ®al.

Sometimes we will write;;®“ - - - ®“ay for the affine tensor product representedipy®
- Qar € A1 ® - - ® Ay to stress that we are dealing with an elememi gR? - - - @ Ay.
The canonical map

a a a a
Ap X -+ X Ao (a1, ... ,ar) = a1® - Qa € A1Q - - - QA

is a multi-affine map. Note that for vector spadéghere is a canonical identification of
Vi - @V with (Vi K)®---® (Vi ®K)) ©(K® - - - ® K). For the dimension we
have the formula

dim(A1® - - @A) = (dim(A1) + 1) - - (dim(Ap) + 1) — 1.

Like in the linear case, we have natural isomorphisms

a a

A1R®A2 >~ Ao®A1, (5)
a a a a

A18(A20A3) > (A1QA2)RA3, (6)

T4 . .

A1QA2 ~ A1 Q A, )
AT t t

(A1®A2)" ~ (A1) ® (A2) . (8)

To define affine skew-symmetric tensor produet)© A for k > 1, let us observe first that
the symmetric grou, acts naturally om ®%. By A’c‘, we denote its affine subspace spanned
by tensors of the form;®* - - - ®“ax, whereq; = a; for certaini # j, i.e. invariant with
respect to a transposition. We put

(/\)fa = A®"%)Af



408 K. Grabowska et al./ Journal of Geometry and Physics 52 (2004) 398—-446

which is canonically a vector space (see the previous section). It follows directly from
definition that any element &ff((A%)*A; A’) represents a multi-affine mappidg: A x
.- x A — A’ (an element oAff(A®¥; A’)) which is constant or¥, i.e. constant on the
set of thosday, . .. , ai) for whicha; = a; for certaini # .

It is a standard task to prove that such multi-affine mappingskee-symmetrim the
sense that

,l 1
F) Y@y o0 s o) = SGNO) Fr(v, az, .. ., ax)
for any permutationr € Sy andao, ... ,ar € A, v € V(A). Itis easily seen that, fdr > 1,

the affine wedge produch®)* A is canonically isomorphic to the standard exterior power
AKA. To put it simpler, one can also say thiat)* A is the affine subspace ixF A generated
by tensorsiy A - - - A ag, a; € A, which happens to be the wholé A.

4, Special affine spaces and special duality

A special affine spacA = (A, ) is an affine space modeled on a special vector
spaceV (A) = (V(A), v0). Theadjoint special affine spack = (A, —v°) is modeled on
theadjoint special vector spacé = (V, —10).

Let A = (4,19 andA; = (4, v?), i = 1,...,k, be special affine spaces with the
distinguished vectors® € V(A), v? € V(A;). By Aff(A1; A) we denote the space of
special affine mapg : A1 — A. Itis canonically a special affine space, since the constant
map onto{v®} is naturally distinguished iv(Aff(A1; A)) = Aff(A1, V(A)). Inductively,
we put

AFFR(AL, ... A A) = Aff(Ag; A L(AL, ..., A A))

for the space of-special affine maps froma; x --- x Ay into A, which consists of maps
F:Ap x--- x Ar — A which are special affine with respect to every variable separately.

The vector hull of a special affine space is canonicalbispecial vector space.e. a
vector spacé’ with a distinguished non-zero vectd? € V and a distinguished non-zero
covectorg® € V* (or an affine hyperspacg) such thatp®(1®) = 0 (or % e V(A)).
Morphisms between bispecial vector spa¥es= (V;, v?, gof.’), i = 1,2, are those linear
mapsF : Vi — V> which respect the distinguished vectors and covectE(ré;) = vg,

F*(¢9) = ¢%.

In finite dimensions we have the obvious equivalence between the category of special
affine spaces and the category of bispecial vector spaces. Since the category of bispecial
vector spaces, which is canonically equivalent to the category of special affine spaces, is
self-dual with the obvious dualityV, 10, ¢0)* = (V*, ¢°, %), we have the natural duality
A < A% in the category of special affine spaces. The d\fabf the special affine space
A = (A, ) is thus the affine hyperspace (A)* = AT defined as the level-1 set of the
functionah? (we use the embeddiny c A**) and equipped with the vectog114(A) = 1,
of its model vector space. In other words,

A* = Aff(A, D),
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wherel = (K, 1) is the canonical special vector space, with canonically chosen map 1
V(Aff (A, 1)). Let us observe thatylreally belongs to the model vector spaceAdT, since
the latter consists of those affine mapsA — K whose linear part vanishes of, i.e.

V(A% = (¢ € Aff(A,K) : oy (°) = 0} = Aff(A/(1%); K)
= {p € Hom(A; K) : (%) = 0} = Hom(A/(1%); K).

The bispecial interpretation of the special affine duality yields immediately the canonical
isomorphismA#)* = A. Note also that one can viemas{x}T, where{x} is a single-point
affine space, and that the map—> —¢ establishes a canonical isomorphism

A# ~ ¥,
A special affine pairindpetween special affine spacks andA; is a special biaffine map
DAL xAry—>|
for which the corresponding maps
® AL A = Aff(A2 1), @ (a2) = (a1, a2),
and
D" Ay — Af = Aff (AL 1), @, (a1) = P(a1, az)

are isomorphisms (in finite dimension it is sufficient that they are injective). An example is
given by the canonical special affine pairing of dual special affine spaces

(v sat AX AT S 1 (g, p)sa= p(a) = a(p)

This is just the restriction of the pairing betweadrandA” = AT = A* to the product of
affine hyperspace x A#. Note that every special affine majp € Aff(A1; A,) has its
dualy® e Aff(A5; AY) defined by

(a1, V" (@h))sa= (¥(a1), @) sa

Note also that the concept of special vector spaces and the corresponding duality has been
introduced in24].

Since morphisms of bispecial vector spaces are linear maps which are simultaneously
morphisms of special and cospecial structures, we can combine the constructions of the
previous section to get products, direct sums, and tensor products in the category of special
affine spaces.

Recall that the special direct suvh @'V is represented by the quotient vector space
V1@ V2/(v9 —19) with the distinguished vector being the clas§ of v? (or, equivalently,
the class{J] of v3). A similar constructiorA; KAz = ((A1 x A2)/((V9, —v9)), [V, vI])
we can perform in the category of special affine spaces. The model spage FOA 5,
which will be called theeduced produgctis canonically isomorphic with' (A1) &V (A).
However,A;1 X A, is not the direct sum in the category of special affine spaces which will
be constructed in a while. The classof vin V(A1) ®V(A2) (resp., the class a1, ap)
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in A1 X Az) we will denote byu®'v (resp.,a1 X az). Note that any special affine pairing

@ : A1 x A2 — | is constant on fibers of the canonical projectlon<?A, — A1 K As.

The notion of the reduced product is useful because of the following fact which can be
easily derived fronTheorem 43).

Theorem 5. For special affine spaces;, i = 1, 2, we have
(A1 K A% ~ AT R AS.

In particular, for any affine spacel andA; = Ax“l, one hasAx“A; = A1 X A, and
consequently

(AxAR)* ~ AT A%,

For special affine spacés = (A;, vf.’),i = 1, 2, theirspecial affine direct sui;®S3A,
is represented by the affine spada &? A2)/ (v —13) modeled on Kefd 4, +14,) /(v —v9)
in (A1 ® A2)/(1) — ) with the distinguished vecta® € (A1 ® Az)/(v§ — v)) being
the class 3] of v9 (or, equivalently, the class] of v3). There are obvious special affine
embeddings oA; into A1®%%A,,i =1, 2.

The special affine producf 1 x52A; is represented byl; x? A, modeled orvV (A1) x%
V(Ay) with distinguished vectar® = (12, v9) in V(A1) x V(A2). The special affine projec-
tions fromA1x53A, ontoA;, i = 1, 2, are obvious. Note that the dimensionsfafpS3A,
and A1 x5%A, are equal, but the model vector spaces are different (we have inclusion
V(A1) x V(A2) C Ker(la, + 1a,), butvd — o9 € V(A1) x V(Ay). However, like for
vector spaces, they are related by duality.

Theorem 6. There are canonical isomorphisms

sa sa
(A1xA)* ~ A¥DAS, 9)
(AlagAZ)# ~ Afi(aAg. (10)

For special multi-affine morphisms froAy x - - - x A, we have a representing object, the
special affine tensor produét; ®52- - - ®53A, such that

sa sa
AfF (AL ... A A) = Af(A1® -~ ®AK A).
This is the quotient of the affine tensor produat®“ - - - Ay, by the linear subspace of
V(A1®%--- ®%Ay) spanned by tensors

a

a Oa a a a Oa a
Q- QP - Qap — h1® - - DV - - - B,

whereq;, b; € A;. In the special affine case difi1®%3A2) = dim(A1) - dim(A). The
canonical map

sa sa sa sa
Al X xXArd (L ...,a0) > a1Q -+ Qax € A1® - - - ®Ay,
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wherea;®52. . . ®%%y is the coset ofi1 ®“ - - - ®“ay, is a special multi-affine map. We have
obvious canonical isomorphisms

sa sa Ssa sa sa Ssa sa # #sa #
A1®A2 =~ A2®A1, A18(A20A3) ~ (A18A2)®As, (A1®A2)" = AT®AS.

Note that there are no speciahffine and skew-symmetric mapgs: A x --- x A — A/,
A = (A9, A" = (A, V) for k > 1, since speciat-affine implies that>(1°, @, ...) =
F2(a,1°, ...) = v and skew-symmetry that}(1°, a, ...) = —F2(a, 1, ...), sov = 0;
a contradiction.

Starting with an object in vector or affine category we can always construct canonically
an object in the special category just by taking the product with(RR, 1). For example,
given an affine spacé we can define itspecializatiorS, as the special affine spag =
(Ax“l, (0, 1)) modeled on the specializati®y4) = (V(A) x|, (0, 1)) of the model space
for A. Using the specialization we can describe certain canonical constructions in affine
category in the language of the special affine category. Note that in this languagg,,
where{x} is a one-point affine space.

Theorem 7. For affine spacedl, A1, A2 there are canonical isomorphisms

@  Si=al (11)

(b) Sa>S;, (12)
sa

(c) Sa1@94, = Sa; DSa,, (13)

(d) SA]_X”AQ = SA]_ X SA2~ (14)

Proof. The proofis straightforward and we will prove only (a) leaving the rest to the reader.
Since anyy € Sﬁ = Aff(Sa; I) is an affine map characterized bya, r) = ¢(a, 0) + r,
there is a one—one correspondence

SZBQDH(pTEAT

given bye'(a) = ¢(a, 0). Itis obvious thatg+ 1SA)T = ¢'+14, sothisis anisomorphism
of special affine spaces. O

5. Spaces of affine scalars

In this section we will consider one-dimensional special affine spaces (Z, v°).
Since the model vector spawé€Z) is one-dimensional and special, we can identify it with
I = (K, 1). In what follows we assume thdtis modeled or. In this picture the adjoint
special affine spacg is isomorphic to(Z¢, 1), i.e. Z is Z with the same distinguished
vector but with the adjoint affine structure:—g o’ = o/ — o (0ro +or = o + (—r)).
The points ofZ are like numbers, i.e. elementsIgf but the origin 0 is not fixed, so only
the difference of points makes sense as a number or, equivalently, we can add numbers to
points ofZ. We will call Z aspace of affine scalar©f course, any pointg € Z defines the
isomorphisml,, : Z — |, 0 — o — oy, of special affine bundles. We can consider also the
mapF : Z — Z' = Aff(Z, K) given byF,(¢') = o —o’. The following is straightforward.
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Theorem 8. The mapr — F,, induces a canonical isomorphisi: Z — Z* represented
by the special affine pairing

Zx2Z>35(00)=F,(0)=0—-0"€l.
This isomorphism extends by linearity to an isomorpHFst AN special vector

spaces

There are canonical geometric structures on the space of affine nuhb8iace a
translation of a polynomial function d is a polynomial function, the algebra R8) of
polynomial functions oiz is well-defined. Itis generated by affine functionshhere is a
canonical ‘vector field’ (derivation of P@2)) onZ being the ‘fundamental vector field'z
oftheK-actiononZ, o — o+s. With respectto any ‘global coordinate systeip’ Z — K
this vector field has the forn{z = —a,, whered,(s") = ns'~1 for s being the standard
coordinate ifK. We can also consider a Jacobi structur&@amith the corresponding Jacobi
bracket

{f gz =Xz(8) —9Xz(/) (15)

on PolZ). Of course, in the cadé = R one can understarnxl; as a true vector field of
and the brackef, -}z can be understood as a bracket defined on the algeb«@) of all
smooth functions o&.

Proposition 1.
(a) Forall g, 0" € Z:

{Fo.Folz =Fs(0") =0 —0; (16)
(b) Forall ¢ € Ztand allo € Z:

{¢,Folz = ¢(0). (17)

Proof. Let us identifyZ with | by fixing certainog € Z and lets be the linear coordinate
onl. Then,F,(s) = o — s and, for¢(s) = as+ b, we have

{as+ b,0 — s}z = —(as+ b)ds(c — s) + (0 — s)9s(as+ b) = (ao + b) = ¢(0)

that proves (a). Part (b) follows from (a) easily. O

Note that the vector spac’ ~ Z is two-dimensional but there is no canonical basis.
Instead, we have the canonical exact sequence

0—>I—>ZT—>I—>O,

where the inclusion is 5 A — 117 and the projectioZ’ 5 ¢ > —Xz(¢) € | gives the
‘directional coefficient’ of affine functions. The affine subsp@éan z% is characterized
as the family of affine functiong on Z for which Xz (¢) = —1. Similarly, the image of
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under the isomorphisrh : z— zZ'is chgracterized bz (¢) = 1. The Jacobi bracket
(15) describes the pairing betwe2d andZ.

Theorem 9. Forall ¢ € ZT and allu € Z:
{6, Fulz = (¢, u). (18)

Proof. The theorem follows easily frorf17) by linearity. O

Remark. We cannot add two affine scalars. However, for spages of affine scalars we
can introduce an equivalence relatiorzirk Z’ by

) ~@n)ez—un=-7

and interpret the equivalence class(gfz’) as a sum of andz’. We recognize the space
of such equivalence classesZa& Z’. Let us remark that this concept of addition of affine
scalars is already present[28].

6. Affineand special affinebundles

All above can be formulateshutatis mutandifor affine bundles instead of affine spaces.
HereK = R and affine bundles are smooth bundles of affine spaces which are locally trivial,
so that we pass from one local trivialization to another using the group of affine transfor-
mations. Since we do everything fiberwise over the same base manifeldd consider
only morphisms over the identity map on the base (if not explicitly stated otherwise), this
generalization is straightforward and we use, in principle, the same notation. For instance,
V(A) denotes the vector bundle which is the model for an affine bundlé@ — M over
a base manifola/. By Sec we denote the spaces of sections, 8gc(¢) (or sometimes
Sec(A)) is the affine space of sections of the affine burtdleA — M. This time, how-
ever, we must distinguish the bundles of morphisms Aflg, (A1, A2), Hom, (V1 Vo),
etc., from their spaces of sections which consist of particular morphisms. We will write
shortly Aff(A1, A2) instead ofSec(Affy (A1, A2)), etc., andAT = Affy (A, R) (resp.,

V* = Homy(V, R)) instead ofAffy (A, M x R) (resp.,Homy,(V, M x R)) andAff(A)
(resp.,Lin(V)) for the space of sections—affine functions an(resp., linear functions
onYvV).

Every sectiorv of the model vector bundl€(A) induces a vertical vector fields on
A (called thevertical lift of V) being the generator of the one parameter group of transla-
tions A > o, — o, + Sv(m). Of coursep is uniquely determined by,. By a special
vector bundlewve understand, clearly, a vector bundle with a distinguished nowhere van-
ishing section. Consequently,special affine bundlés an affine bundle modeled on a
special vector bundle, etc. Every special affine buridie (A, v°) carries a distinguished
vertical vector fieldXa = —vg, being the fundamental vector field of tkiR, +)-action
on A induced by?, i.e. the actionA > o,, — o, + sv°(m), and thus a canonical Ja-
cobi structure determined hya. The corresponding Jacobi bracket of smooth functions
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on A reads

{f gla =TXa(g) — gXa (/).

If V is a vector subbundle in the model vector bundi&) of an affine bundled over M,
then the canonical projection: A — A/V of A onto the quotient affine bundlé/V
defines an affine bundle structure on the total sphoger A/ V modeled or(A/ V) x V
(se€[2]). We will call this affine bundle aaffine projection bundIAP-bundle) and denote
it AP(A, V). Sincep is a morphism of affine bundles ova#, it makes sense to speak about
theaffine section bundlAS(A, V) of p. The affine section bundle with fibers

AS(A, V) = {zm € Aﬁ(Am/Vm; Ap) D Zm 0 Py = idA,”/Vm}

is an affine bundle oveM modeled onAffy (A/V; V). The space of sections of the
affine bundleAS(A, V), i.e. the space of affine sectionsAP(A, V), we will denote by
AffSec(A, V).

If, by chance A is a vector bundle, then we can also speak abouirtbar section bundle
LS(A, V) over M with fibers

LS(A, V)i = {um € HOM(A;,/ Vins Am) st © P = idAm/Vm}-

This is an affine bundle ove modeled orHomy,(A/V; V). The space of sections of the
affine bundleLS(A, V), i.e. the space of linear sectionsAP (A, V), will be denoted by
LinSec(A, V).

Using the canonical extensions of affine maps from an affine space to linear maps from
its vector hull we get the following variant Gtheorem 2

Theorem 10. The canonical embeddingffy (A/V; A) C Homy (A/V; A) induces a
canonical identification

AS(A, V) ~ LS(A, V).

On the level of sections we denote this identification

AffSec(A, V) 3 0 — & € LinSec(A, V).

7. Bundles of affine values

A particularly interesting case is that for one-dimensional special affine buddies
(Z, v°) over M which we will callbundles of affine valud&V-bundles) and usually denote
by Z. The fibers of such bundles are spaces of affine scalars descriSedttion 5 The
sections of an AV-bundle will play the role of functions in our affine differential geometry
that will be developed in next sections. The model vector bukd® for& : Z — M is
one-dimensional and equipped with a distinguished non-vanishing section. It is clear that
thisyields a canonical identification¥{Z) with the trivial bundleM x R with distinguished
non-vanishing section represented by the constant funcign.&. with M x |. Thus the
AV-bundleZ itself istrivializable, since every sectiom € Sec(Z) defines the isomorphism
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I, :Z — V(Z) = M x |, butnot trivial, because we have no canonical trivialization. We
insist on not introducing any particular trivialization, since introducing it is like fixing a
frame or observer in a physical system and our approach is thought of as a geometric
framework for studying such systems in a frame-independent way.

The sections oF can be viewed as ‘functions with affine values’, since they take values
in fibers ofZ which are almost reals except for the fact that we do not know where is 0, so
we can only measure the relative positions of points. The main difference and difficulty is
now thatSec(Z) is not an algebra nor even a vector space but only an affine space modeled
on the algebraC*° (M) of smooth functions. In what follows, we will identify the model
bundle for an AV-bundl&Z with M x |I. Thus we can add reals,, — z,, + s, in every
fiber Z,, of Z, so we have a free and transitive on fibers action of the g®yp-) onZ,

i.e. Z is anR-principal bundle. Let us recall that the vertical vector fieldmvhich is
the fundamental vector field of this action we denotekbyand the corresponding vertical
Jacobi bracket of by {-, -}z. The adjoint special affine bundieis represented by with

the opposite action dR, i.e. with the fundamental vector fieldXz. Conversely, it is easy
to see that everRR-principal bundleZ carries an AV-bundle structure. We have an obvious
bundle version oTheorem 8

Theorem 11. There is a canonical isomorphism

F:Z— 7% Fo, (@) = am — a,, (19)
represented by the the special affine pairing

ZxZ53 (am,dy) > ay —d, €.

This isomorphism extends by linearity to an isomorphismZ — z% of special vector
bundles

F:Z2 >zt deflnes also a map on the level of sectianss Sec(Z) — F, € Aff(2).
SinceM x | — Z asV(Z), we can understandyi as a section of and we obtain
F1,, = 1z, so the mafF- identifies functions o/ with their pull-backs t&Z. Moreover, for
anyo € Sec(Z), the functiornF,, is an affine function o@ which is uniquely characterized
by the property thaF, vanishes on the image of € Sec(Z) and Xz(F,) = 1. This
allows us to understand sectionszbfas smooth functiong on Z with Xz(¢) = 1. The
space of sections df is identified with the space of smooth functions Brsatisfying
Xz(p) = —

An important observation is that every special affine burdtie (A, 1°) gives rise to an
AV-bundle. Indeed, the vector bundeM(A/(v0>; W) is special. As the distinguished
section?®, which is constant on fibers of/(v%) we choseé®(p(a,,)) = —v°(m). Hence,
AP(A, (%)) is canonically an AV-bundle wh|ch we denote Ay(A) The distinguished
section is chosen in such a way th&ty ) is the vertical In‘tvA of W0, SOAV(Z) = Z
andAV(Z#) = Z for any AV-bundleZ. Moreover the magF for AV(A) is characterized
by the property that the affine functidf, associated with a sectianof AV(A) satisfies
] (F5) = 1 andF, o o = 0. Note the isomorphisrAV(A) = AV(A). The choice of the
distinguished section iAV(A) is justified by the next two theorems.
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In the linear case there is an obvious identification of sectioms a vector bundle
with linear functions g+ (X) on the dual bundlé&*, defined by the canonical pairing. &
is a submanifold oE* (in applicationsE’ will be usually a vector or an affine subbundle),
the restriction of g« (X) to E’ will be denoted by g/ (X). In this notation, a sectiom of a
special affine bundl& (regarded as a section 51) will give rise to a linear functiom, + (a)
on A" and an affine functioma#(a) on the affine subbundia” of AT. Denote the maf
for the AV-bundleAV(AT) (resp. AV(A*%)) by FT (resp. F¥).

For a special affine bundle (resp., a special vector buddie)(A, v°) denoteAS(A, (v9))
by AS(A) (resp.LS(A, (1%)) by LS(A)). The spaces of sections of these bundles we de-
note simplyAff Sec(A) andLin Sec(A), respectively. Since the sectidfl is affine, also
AS(A) is canonically a special affine bundle. In the case whds a special vector bun-
dle the affine bundl&S(A) is not canonically special, since the sectighis not linear.
However, in the case wheh is a bispecial vector bundle with the distinguished section
@0 of A*, (¢9,10) = 0, then alsd_S(A) is special affine with the distinguished section
U0 € Hom(A/(v%); (%)),

050(p(am)) = —(¢°(m), an)r°(m).
Theorem 12 (Grabowska et a[2]). There is a canonical isomorphism of affine bundles
A ~LSAh, am > G4,
where
0ay ([9m]) = om — @m(am)1a(m).
In other words for any sectior: of A,
F:;a = 1,t(a).
The corresponding isomorphism of the model vector bundles takes the form

V(A > X < — € (AT/(14))",
wheretk ([pn]) = (@mv(Xm).

Note that the above theorem is an affine version of the well-known fact that sections of
a vector bundle&E over M can be identified with linear (along fibers) functions on the dual
E*, i.e. with linear sections of the bundi& x R over E*. We can extend this identification
to special affine bundles as follows.

Theorem 13. For a special affine bundl& = (A, %) there is a canonical identification
of special affine bundles

A ~ AS(A*) ~ LS(A), am <> Og, <> gy . (20)
On the level of sections it takes the form

Sec(A) ~ AffSec(A”) ~ LinSec(A"),  a < o, < 64, (21)
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where
T _
Fﬁa = pt(a),

Fi = p(a).

This identification leads to the obvious identification of the corresponding model vector
bundles

V(A) = Affy (A%/(1a); R) = Homy (AT/(1a); R)(= (AT/(1a)")

taking on sections the form

X < —ﬂ;( <~ —L;,
where linear functions;r( and affine functioné‘( onAT/(1a) andA#/(14) are the projec-
tions of linear functions,+(X) on AT and affine functions,#(X) on A¥ respectively

Proof. The proof that these bundles are canonically isomorphic is just the combination of
Theorems 12 and 1@ hat the distinguished sections are preserved follows from

Fg o = latla+ W) = Fg +iat (09, F§+ o = tlatla+ O =F +1 O
a+v a P “

Corollary 1. For an affine bundleA and an AV-bundl& over M there is a canonical
identification

Affy(A: Z) ~ ATy, Z.

Proof. Observe firstthat x4,,Z is canonically a special affine bundle and the identification
mapping< graphinduces the identification @ff,; (A; Z) with the spacé\S(A x“y,Z) of
affine sections of the associated AP-bundlle?,,Z over A. The latter is, due to the above
theorem, canonically identified with the special affine buridie®,,Z)* over M. In view

of Theorems 5 and 11

N i
(AxMz) ~ A, 7% ~ AT R, Z. 0

We will end up this section with presenting the above concepts in local coordinates. First
of all, for a special vector bundl&(n) : V = (V, v°) — M we choose a coordinate neigh-
borhoodU in M with coordinatest = (x?) and a basiguv?, ... , v¥, v0) of local sections
over U which contains the distinguished. On fibers ovel we have then the associated
linear coordinatesy, s) = (y1,..., . s), S0 the coordinateér, y, s) on (v(n))~1(U).

We will call such local coordinates ovi linear coordinatesThese coordinates can serve
as coordinates on~1(U) for any special affine bundlg : A = (4, %) — M modeled
onv(n) if we use the isomorphism of affine bundlés: A — V = V(A) determined

by a sections € Sec(A). Such coordinates will be callddcal affine coordinates oA.

The change of the sectianresults in the transformation of coordinates by a translation
(x,y,8) > (x,y+ f(x),s + g(x)), so that objects of affine differential geometry should
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be defined in local coordinates invariantly with respect to this change of coordinatés. On
we have linear coordinatés, y, z, s) such thatA is characterized by the equation= 1.
The canonical vector field oA has the expressiokia = —d,. Affine functions onA have

the form

o(x, y, 5) = & (x)yi + Y(x)s + B(x)
and correspond to linear functions
P(x, y,2,8) = @' (X)yi + y(0)s + B0z

onA. Hence(x?, o, ... , ok, B, y) represent coordinates @. The distinguished section
is 1a(x) = (x, 0, 1, 0). The affine subspac® in AT is characterized by = 1.

If A = Z is an AV-bundle then the coordinatesare lacking and the affine function
corresponding to the sectien: s = o(x) is F,(x, s) = o(x) — 5. For the particular case
of the AV-bundlesAV(A*) and AV(AT) induced by a special affine bundke we have
coordinate expressions, o, 8) — (x,«) and(x, o, B, ¥) — (x, @, y), respectively. The
distinguished sections are described by the equgtien—1. The canonical pairing between
A andATis

(e, 9, 2,9), (x, &, B, ) = yie' + 2B + 57,

so that the canonical pairing betwegrandA* reads

((x, ,8), (x, &, B)sa= ((x, ¥, 1,5), (x, 0, B, 1)) = yi' + B +>s.

In other wordsa#(a) (x, a, B) = yi(x)e + B+ s(x) for a sectionu(x) = (x, y(x), s(x)) of
A.
Affine (resp., linear) sections of the bund®g(A*) andAV(AT) have the form

olx, @) = (v, @ (e +5(x) and 6(x, e, y) = (x, @ 1, i () + s()p),
respectively. The associated affine functih= i,«(a) on A” reads
Fo(x,a, B) = B — yi(0)a' — s(x) = ((x, , B, (x, —y(x), —s(x)))sa

and corresponds to the sectiofx) = (x, —y(x), —s(x)) of A. Conversely, the sectian(x)
corresponds, by definition, to the affine section

Ua(-xs (X) = (.X, «, ﬂ - <(.X', }’(x), S(.X)), (.X, «, /S)>Sﬁ) = (-x’ «, _)’i(x)ai - S()C))
of A¥,

8. AV-differential geometry: the phase and the contact bundles

The standard Cartan calculus of differential forms is based on the algebra of differentiable
functions on a manifola/. We will start to buildAV-differential geometryhere for the
Cartan calculus we replace functions by sections of an AV-bundié — M modeled on
the trivial bundlepry, : M x |. This is our starting object whose sectiddsc(Z) replace
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the sections o x R, i.e. smooth function€°° (M) on M in the standard differential
geometry. This chapter is based[@2,25], where AV-analogs of the cotangent and contact
bundlesT*M andT*M x R have been introduced.

One builds an AV-analog of the cotangent bund@fef as follows. Let us define an
equivalence relation in the set of all pafrs, o), wherem is a point inM ando is a section
of ¢. Two pairs(m, o) and(m’, o) are equivalent ifn’ = m and do’ — 0)(m) = 0. We
have identified the sectiarf — o of pry; with a function onM for the purpose of evaluating
the differential do’ — o) (m). We denote byPZ the set of equivalence classes. The class
of (m, o) will be denoted bydo(m) or by d,,,o and will be called thalifferential of o at
m. We will write d for the affine exterior differential to distinguish it from the standard d.
We define a mappinB¢ : PZ — M by P¢(do(m)) = m. The bundleP¢ is canonically an
affine bundle modeled amy, : T*M — M with the affine structure

doz(m) — do1(m) = d(o2 — 01) ().

This affine bundle is called thehase bundlef ¢. A section ofP¢ will be called anaffine
one-form

Leta : M — PZ be an affine one-form and let be a section ot. The differential
dy (¢ — do) does not depend on the choicesodind will be called thelifferential ofa atm.
We will denote it byda(m) or byd,,«. The differential of an affine one-forme Sec(PZ)
is an ordinary 2-formla € £2°(M). The correspondingffine de Rham complésoks now
like

Sec(2)Ssec(P2) S22 S 283 (mS .. (22)

and consists of affine maps. This is @ffine complexn this sense that its linear part is a
complex of linear maps, so that we can define the corresponding cohomology. The linear
part of (22)is a part of the standard de Rham complex (without its beginning consisting of
the inclusion ofR into C*°(M)). However, note that the cohomology(@2) can be defined
without refereing to its linear part. Indeed, the problem is only with the first and the second
cohomology space, since the rest is the standard de Rham complex. Denote the kernel (the
inverse image of0}) and the image of the affine map: Sec(PZ) — 2%(M) by Z; and

By, respectivelyZ; is an affine subspace &ec(PZ) and B> is a vector subspace of the
kernelZ, of d : 22(M) — $23(M). Moreover, the imag®; of d : Sec(Z) — Sec(PZ)

is an affine subspace iA;. But the quotients of affine spaces are vector spaces, so that
H' = Z1/B, andH? = Z,/ B> are vector spaces. It is easy to see that we got nothing but
the lacking first and second de Rham cohomology.

Recall that the bundl&@ can be considered as a principal bundle with the structure
group(R, +) and the fundamental vector field of this action we have denotefby et us
observe now thaZ represents the principal connection bundIg gfe. there is a canonical
identification of the affine spa&@ec(PZ) of sections oPZ with the affine spaceConn(Z)
of principal connections iZ. We will identify the space of principal connections with the
space of connection one-forms. In other word€,onn(Z) consists of those one-forms
on Z which are Xz-invariant andv(Xz) = 1. Since we can add to the pull-backs of
one-forms onM, both affine spaces are modeled on the spgab@/) of one-forms on\/.
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Theorem 14. There is a canonical isomorphism of affine spaées Sec(PZ) —
PConn(Z), with linear part being the identity om1(M), such that for any section
ofZ

Fda = ng,
whereF, (0’) = o — ¢’. Moreover
dFa = g* (da)a

so that the2-formda € £22(M) is the curvature form of the connectiane Sec(PZ).

Proof. Indeed, sincXz(F,) = 1, dF, € PConn(Z). Moreover, forf € C*° (M),
Fd(d+f) =dF, + fod,

so that
Fdo+ds = Fdo + ¢*df

and we can defing, for arbitrarya € Sec(PZ) by F, = Fgs + ¢* (o — do). Finally,
dFy = d(Fgs + (¢ — do)) = ¢*d(e — do) = ¢*de.

Conversely, ifv € PConn(Z), thenv — do is a vertical andXz-invariant one-form orz
for any sectiorv of Z, thusv — do = ¢*(u) for certain one-fornu on M. Then,v = F,
fora = do + pu. O

In local affine coordinate&?, s) onZ we have
Fo, (e = g (x)dx? — ds.

As we have noticed, there is a distinguished affine sgacef closedaffine one-forms. It
turns out that, like in the case of the cotangent bundle, they can be defined intrinsically as
those sections ¢¥Z whose images are Lagrangian submanifolds with respecnenical
symplectic structuren PZ which is defined as follows.

For a chosen sectianof ¢ we have isomorphisms

I,:Z > M xR, lyg 1 PZ - T*M (23)
and for two sections, ¢’ the mappingdy, andly, differ by translation by ¢ — o), i.e.

lgo 0 I} T*M — T*M : o > a4 d(o — o') (). (24)
Now we use an affine property of the canonical symplectic fargn on the cotangent
bundle:translations inT*M by a closedl-form are symplectomorphispte conclude that
the two-formZj_wu, wherew), is the canonical symplectic form @it M, does not depend

on the choice o and therefore it is a canonical symplectic formPA. We will denote
this form bywy.

Theorem 15. An affinel-forma € Sec(PZ) is closed if and only i&(M) is a Lagrangian
submanifold of PZ, wz).
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Proof. Consider a sectios € Sec(Z) and the corresponding isomorphism of affine bun-
dlesly, : PZ — T*M. With respect to this isomorphism any affine one-faznsorre-
sponds to the true one-fore— do on M : Iy, (a(m)) = a(m) — do(m). According to the
well-known characterization; — do is closed if and only i{e — do)(M) is a Lagrangian
submanifod i(T*M, wyy) so if and only if

a(M) = I3} ((a — do) (M)

is a Lagrangian submanifold aPZ, wz), sincely, is a symplectomorphism. But, by
definition, do — do) = 0 if and only ifde = O. O

Remark. Itis obvious thaPZ andPZ are equal as manifolds. Letbe a section of . The
same mapping interpreted as a sectiol ofill be denoted bys. Sinces — o’ = &' — &,
the isomorphisméy, : PZ — T*M andly; : PZ — T*M are related by, = —Igs. It
follows that

w7 = Ié}wM = —Ié“awM = —wz.

There is no canonical Liouville one-form d?Z (in the standard sense) which is the
potential of the canonical symplectic foray but there is such a form in the affine sense.
To define this Liouville one-form let us build another canonical affine bundle ozt of

We define another equivalence relation in the set of all gairsr). Two pairs(m, o) and
(m’, o) are equivalent ifn’ = m, o(m) = o’(m), and do’ — 0)(m) = 0. We can identify
the equivalence class 6f1, o) with the first jet of the sectioa with the source poini:. We
denote byCZ the set of equivalence classes. The clags:0b) will be denoted by &(m) or
by ¢, 0 and will be called theontact elemerif o atm. We define a fiber bundle structure
over M defining the projectiolC¢ : CZ — M by C¢(co(m)) = m. In other wordsCZ is
the first-jet bundlei(¢) of ¢. This fiber bundle is canonically an affine bundle modeled on
yu - T*M & R — M with the affine structure defined by

Coz(m) — Coy(m) = (d(o2 — 01)(m), o2(m) — o1(m)).

This affine bundle is called tlmntact bundlef ¢. The pair(CZ, (0, 1),)) is a special affine
bundle. Itis easy to s€8Z = PZ x%);Z and thatCZ/{(0, 1))} is canonically isomorphic
to PZ (we just identify the points: in the equivalence relation) so we have the associated
AV-bundle with the canonical projectia; : CZ — PZ.

There is also a canonical projection

u.CZ— Z, u(co(m)) = o(m), (25)

which is a morphism of special affine bundigs : CZ — PZ and¢ : Z — M over the
projection : PZ — M on the level of base manifolds and there is a well-defined pull-back
of sections of, to sections otcz. Now we can define a sectiég of P¢c7z : PCZ — PZ
by

6z(p) = dup*o, (26)

Pz(p) = m, whereo is a section of which representp € P,,Z. In other words, for any
sectiono € Sec(Z)
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6z (da(m)) = d(u*o)(do(m)).

The affine one-fornd; is called the iouville affine formof CZ and defines theanonical
contact structureof CZ. This affine one-form ovePZ is a potential for the canonical
symplectic form orPZ.

Theorem 16. dfz = wy.

Proof. Let us take a sectiosig of Z. Using the identificatiode,, : CZ — T*M x R we
identify the AV-bundletcz : CZ — PZ with the trivial bundleprr«y @ T*M x R —
T*M. With this identification sections afcz are functions oiT*M andu*og = 0 is a
distinguished section af-z, so that sections ®#CZ are standard one-forms ari M with
the standard de Rham differential. Moreover, sectior afe represented by functions on
M, u* is represented by}, and the symplectic formz is represented by the standard
symplectic formwy, onT*M.

Take a sectiorr of Z understood as a function ai. By definition, 8z (do(m)) =
d(r;,0)(do(m)) which means thad; is represented by the true Liouville one-foeiy on
T*M. Hencedfy = wyz. O

Remark. Note that the above proof does not imply that we can define a true canonical
Liouville one-form onPZ. Indeed, it is easy to see that the change of the initial seetjon

into o, with o, = oo + f results, for the trivialization given byy, in translation of the
LiouvilleLiouville one-form: 6y, — 6y — m},df. Thus, the true Liouville one-form on
T*M has no affine meaning (but its exterior derivative has such a meaning), since it is not
invariant by translations by, ( /)). We put a geometrical meaning to the transformation
rules of the Liouville one-form defining its affine version. This explains perhaps better what
an affine one-form is.

The affine Liouville one-formdz can be interpreted as a canonical principal connection
on the principal bundlécz : CZ — PZ, thus as a canonical one-fonjg; = Fg, onCZ.
Inany trivializationl, : CZ — T*M x R and the standard Darboux coordinates py, s)
on T*M x R the affine Liouville one-form has the standard expressjon= p, dx?, so
ncz looks like the canonical contact formszz = p, dx* — ds. It can be also seen directly
that the canonical contact formy, = p, dx* — ds onT*M x R is affine in this sense that
it is invariant with respect to translations ©f M x R by first jets of functions . We will
call ncz thecanonical contact fornean CZ. Like every contact form, it induces a (contact)
Jacobi bracket:, -}cz on CZ which in the above local coordinates reads

of dg  9dg of < of >8g ( dg >8f
a

oty = %8 _ 98 9 g _ B _ )Y 27
{f glcz 3y B apaaxa-l- Pag, f Pagor ~8) % (27)

as

The corresponding Jacobi structure@ain this trivialization takes the formA y;+ Aty A

ds, —05), WhereA y; = 9, Adxa is the canonical Poisson tensorBhy/ associated with the
syplectic formw,; and A1« = p,d,, is the Liouville vector field oiT* M (both regarded

as tensor fields ofi*M x R). Again, this Jacobi structure has an affine flavor, since the
tensors are invariant with respect to translation§inf x R by first jets of functions.
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9. Liealgebroids associated with AV-bundles

The principal bundle structure @frepresented by the vector fiek} induces additional
structures on functions, vector fields and, in general, differential operatafs Bar any
manifold N denote byX(N) (resp.,D*(N)) the space of all vector fields (resp., the space
of all linear first-order differential operators) @ i.e. acting onC*° (N). Clearly, X(N) =
Sec(TN) andDY(N) is the space of sections of the bundlé = TN @R of linear first-order
differential operators oV with the obvious action afX+-4) € Sec(LN) = X(N)DC*>(N)
on functions orW given by (X + k)(f) = X(f) + hf.

Let us fix an AV-bundl&Z over M. The space Pb(Z) of polynomials of ordex n onZ
is defined as the space of those smooth functjpas Z for which X%*l(f) = 0, sothatwe
have the filtration PgkZ) = U,,Pol’ (Z) of the algebra of all polynomials. Note that in the
affine case we have only the filtration and no canonical graduation ¢ Rdh particular,
the space P8(Z) is just the algebra B&Z) of basic functions o, i.e. functions that are
constant along fibers (it will be often identified with the algebra of smooth functiong)on
and Pot(Z) is the spacéff(Z) of affine (along fibers) functions an.

We have also natural subalgebras of the Lie algeti) of all vector fields orZ. The
Lie algebra5((Z) of invariant vector fields o@ consists of those vector fieldsfor which
[Xz, X] = 0. Itis easy to see that, in local affine coordinates s) on Z, invariant vector
fields have the form

X = fa(x)ax” - g(x)aé‘7

where the functiong,, g are basic. Vector fields fromt(Z) can be viewed as sections of
the vector bundl&Z = TZ /R which is the vector bundle ové/ of orbits of the tangent lift
¢, of the (R, +) actiong onZ. Since the vector field7 is invariant, it can be understood
as a distinguished section ©%, soTZ is canonically a special vector bundle. This is just
the Atiyah vector bundle (and canonically a Lie algebroid) associated witR-réncipal
bundleZ.

There is another natural subalgebra of the Lie alge¥i@) of all smooth vector fields
onZ, namely the subalgebr¥;n(2) of affine-homogeneous vector figlds. those vector
fields X which preserve the filtration¥ (Pol’(Z2)) c Pol*(2). Of course X(Z) C Xan(2),
since invariant vector fields lower the filtratioi:(Pol*(Z2)) C uPot”‘*l(Z). Again, the
spaceXan(Z) is the space of sections of certain vector bundfe over M which can
be identified with the bundidZe®,z" = (T @y z1)/(Xz — 1), i.e. the special
direct sum of the special vector bundlEz andZ’. Indeed, it is easy to see that the class
Y®¥¢ € Sec(TZa¥ yZ1), whereY = f,(x)dw — g(x)ds ande(x, s) = a(x)s + Bo(x), is
represented by, (x)d.« — (a(x)s + B(x))ds with B(x) = Bo(x) + g(x), so the vector field
Dxes, = X 4+ ¢Xz gives such an identification.

Similarly, there is a natural subalgebra of the Lie algebtaZ) = D'(2), the subal-
gebraD;h(Z) of affine-homogeneous first-order differential operafamansisting of those
D e DYZ) which preserve the filtrationD(Pol'(Z)) C Pol'(Z). Note thatD} (Z) is
canonically aBBagZ) >~ C*°(M)-module.

It is easy to see the following proposition.
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Proposition 2. There is a canonical splitting);h(Z) = Xan(Z) ® BagZ). Moreover a
vector fieldX on Z is affine-homogeneous if and only{ Kz, [ Xz, X]] = O and[Xz, X]

is vertical. In local affine coordinate&“, s) on Z, affine-homogeneous vector fields have
precisely the form

X = fa(x)0xe — (a(x)s + B(x))0s,
and affine-homogeneous first-order differential operators the form

D = fa(x)0xa — (a(x)s + B(x))ds + y(x).

Note that the vector fields froti;n(Z) are projectable and the vector fietd= f,, (x)0,a —
(a(x)s + B(x))d, projects onto the vector field = fa(x)dx« on M. Before finding an
appropriate bundle whose sections fonéh(Z) let us observe that the canonical Jacobi
bracket-, -}z applied to affine functiong, v € Aff(Z) gives a basic function. Indeed, since
X2(¢) = X2(y) = 0, we have

Xz({p, ¥}z) = Xz(pXz(¥) — ¥Xz(p)) = 0.

Recall that the maj identifies sections of with Aff(Z). In particular, we can identify
sectionsr of Z with affine functiond=, which satisfyXz (F,) = 1, so thaSec(Z) >~ {¢ €
Aff(Z) : Xz(p) = 1z}. We have the following bundle version ©heorem Qbtained just
fiberwise.

Theorem 17. For all ¢ € Aff(Z) = Sec(z") and allu € Sec(Z) = Sec((z"*):
{¢, Fulz = (¢, u). (28)
There is a ‘Hamiltonian map’
ATf(Z) 5 ¢ > Dy = X7 — X2(9) = (9, -}z € D*(2)
with the property
Dy(Fu) ={e, Fulz = (¢, u)

forp € Aff(2),u € Sec(2). Therefore we can consid&’ as embedded i’@;h(Z). For a

sectiono of Z we will write shortly D, instead oD, .
In local affine coordinates, the Jacobi bracket of affine functions takes the form

{a(x)s + B(x), &' (x)s + B'(0)}z = a(0)B'(x) — &' (x)B(x)
and the differential operator associatedt®)s + S(x) € Aff(Z) reads
Da(x)s+p(x) = a(x) — (a(x)s + B(x))ds. (29)

Now, we can extend the map to sections of the bundl®Z = IV_ZeaS”MZT = Tz
¥ uZte¥ 2t by

Dxgwpesy = X + ¢Xz + Dy.
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It is easy to see that this gives the identification of section@Dfwith D} 2h(Z). In local
affine coordinates,

Dr = fa(x)dxa — ((@(x) + ' (x))s + g(x) + B(x) + B'(x))ds + a(x),

whereR = (f,(x)9x — g(x)95)B% (' (x)s + B/ (x)) D% (a(x)s + B(x)). Itis obvious that the
commutator bracket of first-order d|fferent|al operators induces a Lie algebroid structure
on RZ with the anchok X&' ¢®%'y)° = X. In local affine coordinates:

[fa(x)dxa — (cx(x)s + B(x))s + Y(x), fr(x)dxa — (o/(x)v + B (x)ds + ¥ (0]
p .9
(fb(x) Yo 5 () — fb(x) o (x)) Oxa — ((fa(x) —(x) — fa(X)%(x)» s

+fa(x) il —(x) — f;(x)a—)i(x)Jra(x)ﬁ’(x) — o/ (x) B(x)) 0y

/ oy
<fa(X) ~(0) = 1, ()C)—8 a(x)>
X
and

(fa(@X)dea — (@(x)s + B())D; + (x))° = fu(x)da.

Writing X = f,(x)d.« and representing, (x)dy« — (a(x)s + B(x))ds + y(x) by (X, o, B, )
we can write shortly

[(X’ o, ﬂv y)v (X/’ Ol/, :3/? y/)]
= (X, X], X(@) = X' (@), X(B) = X'(B) +of =B, X(Y) = X'(»).  (30)

Note that the distinguished sectiokis; = —d; andlgz = 1 are in this Lie algebroidieal
sectionsi.e. these sections are nowhere-vanishing and the sections of the one-dimensional
subbundles generated Xk, and Irz are Lie ideals with respect to the Lie algebroid
bracket. A special vector bundi&, X¢) equipped with a Lie algebroid structure such that

Xo is anideal section we call adeal-special Lie algebroidAn ideal-special Lie algebroid

for which Xg is a central section, i.6(g commutes with any section with respect to the Lie
algebroid bracket, we callgpecial Lie algebroidlt is easy to see that ideal-sections define
canonically 1-cocycles for the corresponding Lie algebroids.

Proposition 3. If Xg is an ideal section of a Lie algebroid on the vector buné&lef rank
> loverM,thenthereis aclosed-form ¢y, € Sec(E*) suchthafy, Xo] = (Y, ¢x,) Xo.

Proof. Since [Xo, Y] = f[Xo, Y] + p(X0)(/Y and X generates a Lie ideal, the an-
chor p(Xp) vanishes if only rankt) > 1. Thus [, Xo] = @(Y) X for certain function
@(Y) which linearly depends ofi € Sec(E) and®(fY) = f&(Y), sod(Y) = (Y, ¢) for
certaing € Sec(E*). The ‘one-form’¢ is closed with respect to the Lie algebroid de
Rham differential, since, due to the Jacobi identiy[ Y1, Y2]) = p(Y1)(D(Y2)) — p(¥2)
(@(Y1)). O
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For the Lie algebroiRZ denotepy,, by #°. In local affine coordinatesR, ¢°) = «
for R = f,(x)dx — (a(x)s + B(x))ds + p(x), s04° is nowhere-vanishing. There is another
canonical nowhere-vanishing closed ‘one-fot on RZ induced by the decomposition
Déllh(Z) = Xan(Z) ® BagZ), namely(¢!, R) = y. Note that the formy,,, is identically
zero.

The bundlesTZ andLZ are subbundles oRZ characterized by? = fﬁl = 0 and
gﬁl = 0, respectively. On the level of realizations we h@ile= TZ®> | c LZ andLZ =
LZ@> ! C RZ.Of courseTZ andLZ are Lie subalgebroids &Z in every natural sense.
Thus we have the chaifiz ¢ LZ c RZ of Lie algebroids oveM, canonically associated
with Z, whose Lie algebras of sections at€Z), Xan(Z), andD2, (Z), respectively. The
bundlez is the kernel of the anchor mapiiZ, sozT is canonically a Lie algebroid with
the trivial anchor. It is easy to see that the Lie algebroid brack8emz") = Aff(Z) is
given by

o, ¥] = o, ¥}z (31)

Remark. The embedding o’D;h(Z) into D1(Z) corresponds also to a Lie algebroid mor-
phism fromRZ into LZ. This morphism, however, is of a different kind than morphism
which are considered usually and which are associated with the standard morphisms of
vector bundles, and it is represented by a relation, not a map. This kind of morphisms
is the Lie algebroid version of the Zakrzewski's morphisms of groupoids[g&ie The
Zakrzewski’'s morphisms of groupoids lead to satisfactory functorsdtitalgebras (cf.

[19)).

We can embedZ&* 2" into TZ&%yZ'®% 2" ~ RZ putting| not on the third
place but on the second. The resulting subbundi®&sfwe will denotelLZ. It can be
described as the one determined by the equation ¢° = 0 and therefore it is also a Lie
subalgebroid oRZ like every kernel of a closed nowhere-vanishing one-form. The induced
Lie algebroid structure onZ&% y,Z" reads

[XBg, X'D¢] = [X. X]1DX (@) — X'(@) + (9. ¢'}2)

and itis the same as the one obtained from the identificatiﬁﬂ@"s”MZJr with LZ. In other
words,LZ andLZ are isomorphic Lie algebroids differently placedR@. The sections of
LZ are first-order operators ahhaving in local affine coordinates the form

D = f,(x)0xa — (a(x)s + B(x))ds + a(x).

The naturgil isomorphism withz is just the restriction of the anchor maplod = TZ® R,
i.e.D+— D, where

D = fu(0)da — (@(x)s + B(X))d;.
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10. Affinederivationsand affinefirst-order differential operators

Let us fix an AV-bundle; : Z — M. In the standard differential geometry the phase
and the contact bundlés*M andT*M & R are representing objects for derivations and
linear first-order differential operators ar™ (M), i.e. on sections of the trivial vector
bundleM x R. By analogy, in AV-differential geometry by thmindle of affine derivations
on Z (resp., thebundle of affine first-order differential operatoos Z) with values in an
affine bundleA we understand the affine bundiéf,,(PZ; A) (resp.,Affy (CZ; A)). Thus
the affine spac&Der(Z; A) of affine derivationgresp., the spacaDO(Z; A) of affine
first-order differential operatofson Z with values inA is the space of sections of this
bundle. We have an obvious actien— D(o) of D € Aff(PZ; A) (resp.D € Aff(CZ; A))
on sectionss of Z by D(0) = D(do) (resp.,D(0) = D(co)). Inthe cased = M x R
we speak just about affine derivations (resp., affine first-order operatorsod denote
the (linear) spacADer(Z; R) = Sec(Affy(PZ; R)) = Sec(PZ™) (resp.ADOl(Z; R) =
Sec(Affy(CZ; R)) = SeC(CZT)) simply by ADer(Z) (resp.,ADOl(Z)). It is obvious
by definition that the linear parts of affine derivations (resp. differential operators) are true
derivations (resp. differential operators) 6f° (M). It is also clear that these concepts can
be extended naturally to a concept of a differential operator of arbitrary order. In this sense,
the affine spacADOO(Z; A) of affine differential operators of order@n Z with values in
A is the space of sections &ffy;(Z, A), so the differential operators of order 0 with values
in R are sections af .

To understand better the structure of the bundles of derivations and first-order differ-
ential operators let interpret them as certain bundles constructed @utrothe way in
which derivations ofC°° (M) are interpreted as vector fields, i.e. section$ #f. Given an
AV-bundle Z let us consider the cotangent bundteZ. The (R, +)-actiong onZ can be
lifted to an(R, +)-actiong™ onT*Z, (¢*), = (¢—,)*. The fundamental vector field of this
action we denote byt«z. The orbits {.,,] of this action form a vector bundle ové¢
which we denote bf *Z. The sections of *Z are represented by one-formsninvariant
with respect toXt+z. Moreover, there is a canonical decompositiciz = T*Z x Z
given by

OlZm = ([aZm]’ Zm) (32)

which shows thaT*Z is canonically an affine bundle ovéf with respect to the projection
tomz. Thisis a special affine bundle modeleditiz x 1. Inlocal coordinateéx?, s) onZ and
the adapted coordinatés’, s, p,, p) onT*Z, the lifted action read&*), (x*, s, pa, p) =
(x*, s +r, pa, p) and X7+z = —0d;. Hence,(x?, p,, p) represent coordinates drfZ and
the sectionp, = p.(x), p = p(x), represents the invariant one-fop(x)dx + p(x)ds
on Z. The affine phase bundleZ can be identified with the affine subbundle™fZ in
obvious way:

PZ = ([a,,] € T"Z : (s, X72(zm)), = 1}.

Hence,PZ ~ T*Z. The contact bundl€Z is an affine subbundle aF*Z = T*Zx%,Z
being the affine produ®zZ x4 ,,Z.
We can do a similar procedure with the tangent bundle and obtain
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TZ=TZxyZ.

The vector fieldXz is invariant, so it serves as a distinguished sectioﬁZ}fThus'T'Z is
canonically a special vector bundle. Sificgis dualtoT*Z, itis obvious thal z*+ = PZ (or,
equivalently thatPZ)™ = TZ), since sections d?Z are considered as invariant one-forms
vonZ such thab(Xz) = 1. HenceADer(Z) = Sec(TZ) = X(Z) is the space of invariant
vector fieldsX onZ and their action on sectioaf Z is given byX (o) oz = X (F,). Inlocal
affine coordinateéx?, s) onZ for which Xz = —d;, we can writeX = f,(x)0y + g(x) Xz,

so that

X(0) 0 & = (fa(x)0xe — g(x)35)(0(x) —5) = fa(X) 7 (@) + g0

aa

We will use the natural convention and denote the pull-back of a functionf € C*(M)
to a basic function o by F . With this convention we can simply writey ) = X (F5).
According toTheorem 43), CZ' equals

P2)'&uz! =Tz8K 2",

S0ADO'(Z) = Sec(TZ®%yZ"). The sectionD = X&%¢ € Sec(TZg¥ yZ") acts on
o € Sec(Z) by X (o) = X(0) + ¢ o 0. We will identify this bundle with_Z, since we can
interpret this action byD(0) o ¢ = (X + Dy)(F5). In local affine coordinate® has the
form

D = fa(x)0xa — (a(x)s + B(x)) 05 + a(x)
and its action on sections d@freads

Fp@ = D(0) o = D(o(x) —s) = fa(x)%(x) + a(x)o(x) + B(x).
In view of Corollary 1(Section 7,

ADer(Z; Z) = Sec(TZ Ky 2) = (FZxmZ)/(Xz — 1u).

SectionX X o’ € Sec(TZ Xy Z) acts ono € Sec(Z) by (X X o')(0) = X(0) + 0.

The embeddingr of Z into Z" induces the obvious embeddlng'bz X Z as an affine
hyperbundleTZ in Tze®yz'. If we Identify the last bundle With.Z, thenTZ can be
interpreted as an affine hyperbundldLid and its sections can be interpreted as first-order
differential operators o# of the local form

X = fa(x)dxa + (s = B(x))ds.

Their action on sections & is given by

Fxo)(x.5) = X(o(x) —5) = fu(x) (x) + B(x) — s,

SO

X(0)(x) = fa(x) (X)+ﬂ(X)
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Similarly as above, we get

Aff(CZ:2) = (CZ)' Ry Z = LZ Ky Z,
so that

ADOY(Z;Z) = Sec(LZ Ky, 2).

An elementD = DK o’ € Sec(LZ Ky Z) acts ono € Sec(Z) by D(o) = D(o) + o’
Again, the embedding : Z — ZTjnduces the obvious embeddingldt X, Z as an affine
hyperbundle of the vector bundiZ &% ;2T = RZ. This bundle we will denote shortly
LZ, so that, with respect to this identificatiohDOl(Z; Z) is the space of sections b¥,
i.e. the space of first-order differential operatorszoof the local form

D = fy(x)dxa — ((@(x) — D)s + B(x))d; + a(x).
Then,

0
F o) (5, 5) = fa(x)ﬁ(»o + (o) + B() — s,
SO

- a
D(0)(x) = fa(X)gaa(X) + a(x)o(x) + B(x).

We can summarize all these observations as follows.

Theorem 18. LetZ be an AV-bundle oved. There are subbundles &Z: vector sub-
bundlesTZ, LZ, LZ and affine subbundle§Z modeled oriTZ and LZ modeled or.Z,

characterized by? = ¢1 = 0,91 — ¢% = 0,91 = 0,¢° = 1 and¢! = 0, p1 — ¢° = 1,

respectivelysuch that

(a) ADer(Z) = Sec(TZ) = X(2),

(b) ADer(Z; Z) = Sec(TZ),

(c) ADOY(Z) = Sec(Lz),

(d) ADOY(Z; 2) = Sec(LZ2),

andthe actiow — D(o) of sectiond of these bundlegegarded as elements®éc(RZ) =
D1,(2), on sectionss of Z is given by

Fpw) = D(Fs).
Remark. Of course, the vector bund' (whose sections represeﬁDOO(Z)) and the

affine bundlez X, Z (whose sections represe@nlDOO(Z; Z)) are also subundles &Z
contained in the kernel of the anchor map.

11. Canonical Lie affgebroids associated with AV-bundles

In the standard differential geometry the canonical Lie algebroid associated with a man-
ifold M, or better, with the trivial bundld/ x R, is TM. With an AV-bundleZ we have
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associated the bgndﬁéz. Sections ofTZ are interpreted as affine derivations on sections
of Z. The bundleTZ carries a canonical Lie algebroid structure like every Atiah bundle
of a principal bundle. The Lie bracket is inherited fram(Z). The bracket can be also
described in terms of affine derivations:

[X, X1=Xyo X — (X')yoX,

whereXy is the vector part of the affine derivatidh: Sec(Z) — C°°(M) (whichrepresents
also the anchor ok).
Similarly, the bundlé.Z is also canonically a Lie algebroid with similarly defined bracket

[D,D]=DyoD — (D')yoD,

whereDy : C®(M) — C®(M) is the vector part oD € ADO(Z).

Recall that the distinguished sectiogy = —d; andIgz = 1 are in the Lie alge-
broid RZ ideal sectionsi.e. these sections are nowhere-vanishing and the sections of the
one-dimensional subbundles generatedlgy and gz are Lie ideals with respect to the
Lie algebroid bracket. The closed ‘one-form’ corresponding ¢ we denote by©.

The special affine bundleBZ andLZ also carry canonical algebraic structures, rep-
resented by the commutators of their sections regarded as affine blnaf8ec(Z) —
Sec(Z):

[D,D1=DoD — D' oD.

These structures can be recognizetiasaffgebroidstructures. Recall (cf2]) that anaffine
Lie bracketon an affine spacd is a bi-affine map

[]:AXx A= V(A
which is skew-symmetrica];, o2] = —[o2, o1] and satisfies the Jacobi identity:
[01. [02, 03112 + [02, [03, 0112 + [0, [01, 02]]% = O,

where [, -] is the affine-linear part of the biaffine bracket. An affine space equipped with
an affine Lie bracket we shall calllae affgebra Note that the termaffine Lie algebrehas
been already used for certain types of Kac—Moody algebras.

If A is an affine bundle ove modeled orV(A) then alLie affgebroid structuren A
is an affine Lie bracket on sections afand a morphisny : A — TM of affine bundles
(over the identity on\f) such that§;, -2 is a quasi-derivation with the anchg(o), i.e.

[0 X2 = flo, X]2 + y(0)(HX
forall o € Sec(A), X € Sec(V(A)), f € C=®(M).
Remark. The above definition is a slight generalization of the one propos¢ti2ifi3]

where the additional assumptions that the base maniois fibered oveiR and thaty(c)
are vector fields projectable ontgor have been put. On the other hand, one can try to
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define Lie affgebra as a skew-symmetric (in the affine sense) brackgtdn Sec(A) with
values inSec(A) satisfying the Jacobi identity of the form

Y SN0, [0w@): 0u@]da = 0.

weS3

The l.h.s. of the above equation is a vector combination of elemereofA), so the
identity makes sense. The problem with such definition is that, as we already know, any
skew-symmetric operation o8ec(A) defines automatically an elemesy € Sec(A),

oo = [0, o], and we get such a bracket in the fore [o2], = [01, 2] + 00, Where [, -] is

the Lie affgebra bracket in the version we started with. Fixings usually too much (we

just get a trivialization of the affine space) for applications and canonical examples, so we
remain with the weaker definition.

Example 1. Every AV-bundleZ carries a canonical Lie affgebroid structure induced by
the affine structure. The bracket of sectiens’ of Z is just [0, 0] = (o — o).

The following fact has been proved|[iB], Theorem 11

Theorem 19. A map[-, -] : Sec(A) x Sec(A) — Sec(V(A)) is a Lie affgebroid bracket
on an affine bundlet if and only if there is an extension of this map to a Lie algebroid
bracket[-, -] on A such that

[Sec(A), Sec(A)]" C Sec(V(A)). (33)
Moreover (33)is equivalent to the factthay € Sec(AT) = Sec(A*) isaclosed one-form

The Lie algebroid A, [-, -]*) is uniquely determined by the Lie affgebrdaid, [-, -]) and
we will call it the Lie algebroid hullof (A, [-, -]).

Example 2. The Lie affgebroid bracket o from the previous example extends to a Lie
algebroid bracket oZ. This bracket can be expressed by means of the canonical Jacobi
bracket orZ by F, ,; = {Fu, Fu/}z.

Since the affine subbundl@Z andLZ in the Lie algebroidiz andRZ are defined as
the 1-level sets ap® andg! — ¢0, respectively, we get the following theorem (g]).

Theorem 20. The special affine bundld@Z andLZ carry canonical Lie affgebroid struc-
tures for which the brackets are the commutatoraber(Z; Z) andADOl(Z; Z), respec-
tively. The Lie affgebroid hulls &fZ andLZ are LZ andRZ, respectively

12. Aff-Poisson and aff-Jacobi brackets

The idea of an affine analog of a Poisson bracket goes bd@dtdout we will mainly
follow the picture described if2].
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Let Z be an AV-bundle oveM. An affine Lie bracket oisec(2)
{-,-} : Sec(Z) x Sec(Z) — C*(M)
is called araff-Poisson(respaff-Jacob) bracketif
{0,-} : Sec(Z) — C*(M)

is an affine derivation (resp. an affine first-order differential operator) for every
Sec(2).

We use the terraff-Poissonsinceaffine Poisson structulteas already a different meaning
in the literature.

Example 3. Every AV-bundleZ carries a canonical aff-Jacobi bracket determined by the
affine structure:

(o0} =0—0. (34)

Theorem 21 (Grabowska et a[2]). For every aff-Poissofresp. aff-Jacoblibracket
{-,-}:Sec(Z) x Sec(Z) — C*(M)

its vector part
{1 CT(M) x CZ(M) — C=(M)

is a Poissor(resp. Jacobibracket. Moreover
{o.-}7 1 €M) — C®(M)

is a derivation(resp. first-order differential operatdfor every section € Sec(Z), whichis
simultaneously a derivation of the bracket:},,. Converselyif we have a Poissoftesp. Ja-
cobi) bracket{-, -}o on C*°(M) and a derivationresp. a first-order differential operatpr

D : C®(M) - C*(M)

which is simultaneously a derivation of the bracket}o, then there is a unique aff-Poisson
(resp. aff-Jacobibracket{-, -} on Sec(Z) such that{-, -}o = {-, -}y and D = {c, -}5 for a
chosen section € Sec(2).

Using a sectiomwy to identifySec(Z) with C*° (M), we get that the aff-Poissqresp. aff-
Jacob) bracket onSec(Z) has the form

{0.0'} = D(¢' —0) + {0, 0"}y,

whereD is a vector fieldresp first-order differential operatdmvhich is a derivation of the
Poisson(resp. Jacobibracketf-, -}y.

Example 4. Every Poisson (resp., Jacobi) bracket}, on C°°(M) can be interpreted as
an aff-Poisson (resp., aff-Jacobi) bracket} on sections of the trivial AV-affine bundle
M x 1. In this case the trivialization is canonic#@),= 0 and{-, -} = {-, -} i.
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Theorem 22. Let¢ : Z — M be an AV-bundleThen

(1) There is a one-to-one correspondence between aff-Poisson bréckiis on Sec(Z)
and Poisson brackets -} 7 onC® (Z) which areXz-invariant,i.e. which are associated
with Poisson tensord onZ suchthaky, IT = 0.This correspondence is determined by

{o.0"Yap o ¢ = {Fs, Fo'}m. (35)

(2) There is a one-to-one correspondence between aff-Jacobi brgekets on Sec(Z)
and Jacobi bracket§, -}; on C*°(Z) which are associated with Jacobi structures
(I, on Z such that &, I" = 0 and %&,IT = I A Xz. This correspondence is
determined by

{0.0"}a30 ¢ = {Fo, For}y. (36)

Proof. We will prove only part (2). The proof of (1) is analogous but easier. Since all objects
are local oveM, we can use local affine coordinat@s, s) onZ in which Xz = —d, and
identify sectionsr of Z with functionso(x), so that~, (x, s) = o(x) — s. We will identify
functions onM with basic functions oZ. Assume first thaf-, -}a3is an aff-Jacobi bracket
onSec(Z). According toTheorem 2%here is a Jacobi structusg = (1o, Ip) onM and a
first-order differential operatdd = °D+f onM suchthafo, 0'}ag = D(o—0")+{0; o'} jp-
Theequation (36ran be rewritten in the form

MMo(0, o) + oTo(0”) — o' To(0) + D(o — ') + flo — o)
=M —s5,0 —5) + (6 —s5)(6 —s)— (¢ —s)[(c —5),

which has a unique solutioh = (11, I), namely
IT =1y + 3 A (D — sI), I =To— fd.

It is easy to see that the Jacobi identity far-}5; implies the Jacobi identity fof, -} ; and
that this solution has the required properties with respeckjo £

Conversely, assume thdtis a Jacobi structure oA. The conditions £,I" = 0 and
£x,I1 = I' A Xz imply that £, ({(c — 5), (6' —s)}y) =0, i.e.{(c — ), (0’ —s5)}sisa
basic function, so thgR1) defines a bracket o8ec(2). It is easy to see that this bracket
is an aff-Jacobi bracket. O

Note, that every skew-symmetric affine bracket} is uniquely determined byo, -}3,
namely

{0,0') = {0,0' — 0)2. 37)

For an aff-Poisson bracket on sectionsZzothe mappingf +— {o, f}e is a derivation of
the algebraC*° (M), hence a vector field oM. We denote it byX, and we call it the
Hamiltonian vector fieldf o.

Example 5. The canonical Poisson structureon the cotangent bundlE* M is invariant
with respect to translation by the vertical lif§«,; of any closed one-form € Sec(T*M).
If  is nowhere-vanishing, we can consider the corresponding AV-binglé\V (T* M) for
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which X7 is the vertical lift ofa, i.e. Xz = aT+),. Hence, the AV-bundI&, i.e. : T*M —
T*M/{a), carries a canonical aff-Poisson structure with the bra¥&t Since, for any
sectiono of Z and for any functiory onT*M/(«), we have({a, f}ap)20¢ = {Fy, fo &},
the Hamiltonian vector field, on T*M/(«) induced by the sectios is the projection of
the Hamiltonian vector field om*M induced byF,.

In the theory of Lie algebroids it is well-known that a Lie algebroid bracket$$n the
vector bundleE are in a one-to-one correspondence with linear Poisson brajckgten
E*. Linearity of the bracket means that the bracket of linear functions is a linear function
and the correspondence is described by

{tex(XD), tp+(X2)} = tp= ([ X1, X2]),

wheretg+(X) denotes the linear function ati* associated canonically witki € Sec(E).
In [3] it has been shown that this correspondence can be extended to a one-to-one corre-
spondence between Lie algebroid bracket&@md affine Jacobi brackets (bracket of affine
functions is an affine function) on an arbitrary affine hyperbundigf £*. In the case of
special affine bundles we have an analogous correspondence which réfeeptem 13

LetA = (A, v?) be a special affine bundle ov&f. There is an obvious identification of
a sectionX of V(A) with a linear function+(X) on AT and an affine functiomy#(X) on
A¥ which are invariant with respect to translation by, $o they are pull-backs of a certain
linear functiont;r( and an affine functiozﬁ onAT/(1a) andA#/(14), respectively.

Theorem 23 (Grabowska et al[2]). There is a one-to-one correspondence between Lie
affgebroid bracket§-, -]a on a special affine bundi&é and

(1) linear aff-Poisson bracket§, -}o+ on the AV-bundleAV(AT), i.e. onp' : AT —
AT/(1a), determined by

Gty = o Galar (38)
(2) affine aff-Jacobi brackets, -} 5+ on the AV-bundl&V(A%),i.e. onp : A* — A#/(1,),
determined by

Gl = 100> 0w} pt. (39)
This aff-Jacobj bracket is aff-Poisson if and only if the sectigiis central in the Lie
algebroid hullA of A.

Remark. Here we call an aff-Poisson (resp., aff-Jacobi) structure linear (resp., affine) if
the bracket of linear sections pf : AT — AT/(1a) (resp., the bracket of affine sections
of p : A* — A*/(1p)) is a linear function orAT/(1a) (resp., it is an affine function on
A¥/(1a))-

Proof. Part (1) has been proved [B], Theorem 19so0 [, -]a induces certain aff-Poisson
bracket{-, -}ot. According toTheorem 22there is a Poisson tensf on AT which corre-
sponds to the aff-Poisson bracket}+. This tensor is, clearly, linear and it is invariant with
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respect to the vector field™ = (1a) at—the vertical lift of the section A Now, we use the
result[3], Corollary 3.6, which implies that there is a one-to-one correspondence between
linear Poisson brackets -};7 onAT and affine Jacobi brackets -}, on A# such that

{u, viglas = {ulps, viasls

for all linear functionsz, v on AT. The Jacobi structuré = (1o, I'p) is the restriction to
A¥ of the Jacobi structur@T 4 I" A Apt, 1), wherel” = (2, -} 7 is the Hamiltonian vector
field of the linear fUﬂCtiOﬂAT(UO) € Sec(V(A)) which defines the affine hyperbundié
in AT and Apt is the Liouville (Euler) vector field on the vector bundé. The crucial
point is thatX T preservedT if and only if it preserved™ and

Et(IT+ T AAxt) =T AX". 40
X A

Indeed, since the vector fieki" preservedT, and the functiomAf(vo) due to the fact that
XT (a1 (09)) is the pull-back of 14, v°) = 0, it preserves alsp, i.e. £+ I" = 0. Moreover,
sinceX™ is a vertical lift, £XTAAT = XT. Thus we ge(40) and, due toTheorem 28b),

we get an aff-Jacobi bracket -} ,» on AV(A#). It is easy to see that it satisfi€@9). The
converse is proved by a similar reasoning in reversed order. Passing to the restricitns to
we get, in view 0f(22), thatJ corresponds to an aff-Jacobi bracket on sections &ince
F;I|A# = F# | the theorem is proved. 0

Example6. The canonical Lie affgebroid structure @dmjiven by o, 0'] = (¢’ —o0) induces
an aff-Poisson structure on the AV-bun@ié(Z ") and an aff-Jacobi structure 8w (Z*#) =
Z. The corresponding linear Poisson structur&édriresp., affine Jacobi structure @) is
T = Azt A X7 (resp.,J = (0, Xz)).

Example 7. Consider the Lie algebroid structure oz as a Lie affgebroid structure on
the special affine bundle (in fact, special vector bundle). The special affine( tiaf

is PZ %41, SOAV((TZ)%) is the trivial AV-bundle ovelPZ. The corresponding aff-Jacobi
bracket orPZ x“l1 is the aff-Poisson bracket induced from the canonical Poisson structure
on PZ associated with the canonical symplectic structure.

Example 8. Recall that we have the identificatiofz = TZ Ky Z = (PZ)" Ky Z,

so that, according tdheorem 5(TZ)* = PZx“y,Z*. The corresponding AV-bundle is

p: PZx9yZ% — PZ.BUtPZx%yZ* = PZx%yZ = CZ,sothatdV((TZ)*) = AV(CZ).

The special affine bundl€Z is canonically a Lie affgebroid, so, due to the above theorem,
AV(CZ) is equipped with a canonical aff-Jacobi structure. It is easy to guess that this
is the structure correspondinga Theorem 22to the canonical Jacobi brack@7) on

CZ associated with the canonical contact form which, in turn, is represented by the affine
Liouville one-form. Indeed, letx?, py, s) be standard affine coordinates 6# induced

from the Darboux coordinates ifi*M x R and let(x?, f3, B) be the coordinates imz
representing the vector field

X = fa(x)0e + (s — B(x))0s € Xan(Z).
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The duality betweedZ = (PZ)' Ky Z andCZ = PZx%yZ is given by((x%, f, f),
(% pp.as = fapa + B — s S0 thati, (X)(x, pp.s) = fu(x)pa + p(x) — s and
ox(x?, pp) = (x4, pp, fa(x) pa + B(x)). Since the Lie affgebroid bracket ¥ reads

[X. XNtz = [fa)dsa + (s — BB, f5 (030 + (5 = B/ @)s]paz,

(fb(x) Yo 500 = [0 af = (x)) Oya

(fa(x) i S0 = falx )%(x) + Bx) — ﬁ’(X)) ds,

the corresponding Jacobi bracket®a is uniquely characterized by

{fa@®)pa + B(X) =5, fr()pp + B'(x) — s}y

(fb(x) af 700 — fH(x) 8’2( ))
<fa(x)£( ) = falx )a—ﬁa(X)+ﬂ(x) ﬁ/(x)>-
Itis easy to check that this is exactly the Jacobi structure
J = Bp, A dxa + Padp, A ds, —0y),

i.e. the Jacobi structure of the contact one-forgx? — ds.

13. Aff-Poisson and aff-Jacaobi (co)homology

Let Z be an AV-bundle oven. It is obvious that affine biderivations ah are affine
derivations orZ with values inADer(Z), i.e. sections of the bundle

Affy(PZ; TZ) = Homy (PZ: 72)) = P2) @y T2 = TZ @y TZ.

In this picture, skew-symmetric affine biderivations are sNectionszﬁTtZ. Similarly, affine
first-order bidifferential operators ofi are sections of\2LZ. Since both,TZ andLZ,
are Lie algebroids, there are the corresponding Lie algebroid Schouten brackkis [
and [, J;, on the Grassmann algebrasTz) = @,A"(TZ) = @,Sec(A"TZ) and
A(LZ) = @,Sec(r"LZ) of the vector bundle§Z andLZ, respectively. What will be
crucial here isthat the Lie algebrdid possesses additionally a canonical closed ‘one-form
¢? inherited fromRZ (in fact, ¢° = ¢1 onLZ) which makes it into dacobi algebroidvith

the Schouten—Jacobi bracket {] ‘E’Z.

Remark. The Jacobi algebroids have been introduced by Iglesias and M@t§ronder
the namageneralized Lie algebroidend recognized as graded Jacobi brackej4,5i. For
the definitions and details we refer to these papers or to the g@iclehich contains a
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brief introduction to the theory of Jacobi algebroids, the corresponding lifts of tensors and
canonical structures

Theorem 24.
(a) A € Sec(A2TZ) represents an aff-Poisson structuresif and only if[ A, A] 77 =0.
(b) J € Sec(A2LZ) represents an aff-Jacobi structure @rif and only if[ .7, jj]‘é’; =0.

In other words, aff-Poisson and aff-Jacobi structures are canonical structures for the Lie
algebroidTZ and the Jacobi algebroid_Z, ¢°), respectively

Pr oof.

(&) We will use a trivialization of to identify'T’Z with LM = TM @R and we will use the
expressionD = (X, B) € Sec(LM) = X(M) x C*°(M) for sectionsD of TZ (see the
convention precedingB0)). The action o € Sec(Z), identified with functions o/,
readsD(o) = X (o) + B. With respect to this identification, sections T commute
exactly as sections @fM, i.e. (cf.(30))

[(X. B). (X", )5, = (X, X']rm. X(B) — X'(B)).

SinceA?TZ is identified withA2(TM @ R), elementsA € Sec(A2TZ) are of the form
A = Ao+ Xz A Xo, whereXz = (0, 1), Ag € Sec(A2TM) is a bivector field on\
andXg is a vector field onM. The bi-sectiom induces the bracket

{o,0'} 4 = {0, 0"} 4o + Xo(0" — 0).

In view of Theorem 21this is an aff-Poisson bracket if and only Afy is a Poisson
tensor and Ko, Ao] SN = 0, where [, ]SN is the Schouten—Nijenhuis bracket, i.e.
the Lie algebroid Schouten bracket fon/. But these conditions are equivalent to
[A, Al5, = 0. Indeed, sinc&7 is a central section,

[A, A]ITZ = [ Ao, AO]I'T’Z + 2[Ag, Xz A XO]ITZ +[Xz A Xo, Xz A XO]ITZ
= [Ao. 4013V - 2X7 A [ Ao, Xo] >N

that vanishes exactly whemp, Ao]SN= 0 and [4o, Xo] SN= 0.

(b) Similarly as above we use an identificatibZ ~ L & R and the expressio® =
(X, B) € Sec(LM @y R) = DY(M) x C°(M) for sectionsD of LZ. The action on
o € Sec(Z) readsD(o) = X (o) + B. With respect to this identification, sectionsLat
commute like

[(X. B). (X' Bz = (X, X'Lm. X (B) — X'(B)).

Elements7 € Sec(A2LZ) are of the form7 = Jo + Xz A Do, whereXz = (0, 1),
Jo € Sec(A2LM) is afirst-order bidifferential operator dd and Dy is a first-order dif-

0
ferential operator oM. The Schouten—Jacobi bracket{] QEZ restricted td_M gives the
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0
canonical Schouten-Jacobi bracket-IfM on A(LM) for which canonical structures
are Jacobi structures o (cf. [4]). The section7induces the bracket

{0,0'}7 = {0, 0"} 7 + Do(0" — 0).

This is an aff-Jacobi bracket if and onlyjb is a Jacobi structure andp, Jo] ‘f?w =0

0
(Theorem 2). But these conditions are equivalent t(j’,lU]I?Z = 0. Indeed, sinc& 7
0
is an ideal section such thab[ Xz];, = #°(D)Xz, we have R, XZ]I‘E’Z = Xz A

igoR for any R Sec(A(I:Z)), and, due to the properties of the Schouten—Jacobi
brackets,

17, AL =170, J1E. + 2100, Xz A Dal%,, + [ Xz A Do, Xz A Dol?
LZ LZ LZ LZ
= 1%, o1, + 2L Jo. Xz1%, A Do
Xz ALJo. Dol?, — igoJo A Xz A Do)
= [ Yo, Jo]lf?w —2Xz N[ Do, Xo]lf_fw

0 0
that vanishes exactly when7j, jo]l"ﬁM = 0 and [7, Xo]l‘fM = 0, i.e. whenJp
is a Jacobi structure for whicg acts as a derivation of the corresponding Jacobi
bracket O

Since aff-Poisson and aff-Jacobi structures have been recognized as canonical struc-
tures, we can apply results [#] to characterize them in terms of induced morphisms of
vector bundles, and results Bf,5] to define the corresponding cohomology and homo-
logy.

ForY € Sec(A(TZ)) denote byY* its Lie algebroid complete lift to a multivector
field on TZ (see[7,8] or the survey in9]). Similarly, for ¥’ € Sec(A(LZ)) denote by
Y,40 its Jacobi algebroid complete lift to a first-order polydifferential operatoLdr{see
[4] or the survey in[9]). Let Az,, be the canonical linear Poisson structure 12
representing the Lie algebroid structure od and let J;+, be the canonical homoge-
neous Jacobi structure on the duar of LZ representing the Jacobi algebroid structure
onLZ.

Theorem 25.

(i) A€ Sec(A?TZ) represents an aff-Poisson structure @nf and only if the tensors
Az., and— A€ are i -related wherefiy : T*Z — TZ, g4 (m) = iy, A(m).

(i) J e Sec(A2LZ)representsan aff-Jacobi structure giif and only if the first-order bid-
ifferential operators/;,, and—j¢o aret s-related wheret 7 : L*Z — LZ, § 7(wp) =
i, J(m).
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Theorem 26.
(@ A e Sec(A2TZ) represents an aff-Poisson structure @nif and only if the graded
operatorda(¥) = [A, Y]4, of degreel on A(TZ) is a cohomology operatoi.e.

@4 =0.
(b) J € Sec(A?LZ) represents an aff-Jacobi structure @if and only if the graded

operatorsag(R) =[J R]Iql:boZ +tigoJ A R of degreel on A(LZ) are cohomology
operators for allr € R, i.e. (3)% = 0.

Proof. The implication “if” is essentially the graded Jacobi identity applied to the bracket-
ing with canonical structures. The other follows from the fact that the corresponding
Schouten and Schouten—Jacobi brackets have no central elements among 3-tengors.

The cohomology associatedig we will call theaff-Poisson cohomolog¥he cohomol-
ogy associated tﬁ% (resp.a}7) we will call aff-Jacobi cohomologfresp. aff-Lichnerowicz-
Jacobi cohomology

For any Lie algebroid structure on a vector bunéldenote by £ the corresponding Lie
differential & = iy odr — (—1)!¥ldg oiy with respect to the multisectidn € Sec(AYE).
Here and furthefY| denotes the degree of the tengor

Theorem 27.

@ Ae Sec(A2TZ) represents an aff-Poisson structure dnf and only if the Lie differ-
ential

£A:lAOdTZ_deOlA’

which is a graded operator of degreel on A(T*2), is a homology operatori.e.
(E4)?=0. _

(b) J € Sec(A®LZ) represents an aff-Jacobi structure @nif and only if the Jacobi-Lie
differential

£9" () = £7(0) + (0] + Dt g 7@) + ¢° A i 7(0).

which is a graded operator of degre€l on AL*Z),isa homology operator for each
0
teR,ie (N2 =0.

Proof. The part “if” follows from the identities (sef])
2(E0)% = ~£4,415,
and

2612 = £ .
[7.717,

The other part follows from the fact that passing to the Lie differentials in the algebroids in
question is injective for 3-tensors. O
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The homology associated withyBnve will call aff-Poisson homologyThe homology

associated with fé)’o we will call aff-Jacobi homology
Aff-Poisson and aff-Jacobi structures give also rise to the corresponding triangular Lie
bialgebroids and Jacobi bialgebroids (4f.10,18). We will not go into the details here.

14. Applications

Example 9 (Tulczyjew and Urbaski[22,25)). In gauge theories potentials are interpreted
as connections on principal bundles. In the electrodynamics the gauge grdRp-i3
and the potential is a connection on a principal burtdleZz — M over the space—time
M, i.e. on an AV-bundlZ = (Z, 1)) over M. An electromagnetic potential is a section
o.M — PZ.

According to[27], the phase manifold for a particle with the chaege R is obtained
by the symplectic reduction df*Z with respect to the coisotropic submanifold

K,={peT*Z:(p, Xz)=—e}.

Let us denote by.Z the reduced phase space. It is easy to see that it is an affine bundle
modeled onT*M. We show thaP,.Z is the phase bundle for certain special affine bundle
Ze.
First, letY = Zx“?l be the trivial AV-bundle oveZ. We define afR-action onY by the
formula

ZxR)yxR>{(z,n), D> (z+t,r+te)e ZxR =Y.

The space of orbits is an affine bundle modeledvbrx R and denoted by.. We denote
by ¢. the canonical projectioZ, — M. The distinguished section &f(Y) (the function
1) projects to the constant function,land the canonical projection, : ¥ — Z,is a
morphism of special affine bundlés— Z, = (Z,, 1)). The inducedR-action onZ, has
the form

Ae(Z, 1) +5=Ade(z, 7 +5) = Ae(z + 1, r + 5+ tE).
Fore = 0 the bundleZ, is trivial: Zg = M x R and fore # 0 we have a diffeomorphism
D, .7 — Z,, Tz Ae(z, 0).
The diffeomorphism®, is an isomorphism of the special affine bun@te —(1/¢)1,) onto
Z,:
P, (z - %r> = Ae (z - %r, 0) =Xe(2,7) = Xe(2,0) +7 = Pp(2) + 1.

In particular,Z_, = Z andZ1 = Z. To put it simpler, let us observe that, according to
[2, Example 3]Z, is just the level-set of4in Z associated with valuee. The diffeomor-
phism®, comes just from the homotety bye in Z.
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Let o be a section of,. The functiomt’o onZ has the property
Xz(Ajo) = —e.

We conclude that the induced by relationPY — PZ, is the symplectic reduction with
respect to a coisotropic submanifold

Ke={peTZ:(p, Xz) = —e}

Thus the phase manifol®.Z for a particle with the charge is the phase bundle for

the special affine bundl&,. Another way to see this is to use the decomposilivd =

T*Z x y Z. The symplectic reduction in question is the reduction with respect to the moment
map for the phase lift of the canonid&taction onz, i.e.

Pez = {[azm] € -f*z : <ava XZ(Zm))Zm = _e}.

But (e, , Xz (zm));, = —eis equivalenttde,, , —(1/e)Xz(zn)),, = 1thatis aformofa
definition of PZ,.. That the symplectic structure &z, defined originally as the pull-back
from T*M when a section o is chosen, coincides with the one reduced ffBfd can be
easily checked in the given trivialization.

The isomorphisn®, gives a one-to-one correspondence between sectianaraf sec-
tions of¢,, for e £ 0. It follows that a chosen section pprovides a trivialization oZ and
also ofZ,. In such trivializations, a sectianof ¢ and the corresponding sectidn o o of
¢ are functions onM related by the formula

®,o00(m) = —ea(m).

The correspondenee— @, oo of sections projects to a correspondence of affine covectors
and consequently gives a correspondence of affine one-forme. lheta section oP¢ :

PZ — M ande, be the corresponding sectioni{,. In a given trivialization, the sections

a ande, are one-forms related by the formula = —ea. 5

_ The Lagrangian of a relativistic charged particle is a secfiprof the bundleT¢, :

TZ, — TM over the open saf = {v € TM : g(v, v) > 0} given by the formula

L.(v) = (de, v) +m+/g(v, v),

whereg is the metric tensor on the space-tiMem is the mass of the particle, ag@,, v) =

a.(v), where an element d?Z, is interpreted as a linear section®, : TZ, — TM,

i.e. as an element &fS(TZ,). In this example Lagrangians are sections of an AV-bundle.
Hamiltonians are ordinary functions but not on a cotangent bundle but on the affine phase
bundlePZ,.

Example 10 (Urbahski, cf.[24]). The space of events for the inhomogenous formulation
of time-dependent mechanics is the space—thhébrated over the tim&. First-jets of

this fibration form the infinitesimal (dynamical) configuration space. Since there is the
distinguished vector field;, on R, the first-jets of the fibration over time can be identified
with those vectors tangent #d which project ord;. Such vectors form an affine subbundle

A of the tangent bundl€ M modeled on the bundM of vertical vectors. The Lagrange
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formalism in the affine formulation originates on the AV-bundi“l — A and the
Lagrangians are ordinary functions dnThe Hamilton formalism now takes place not on
the dual vector bundl¢* M of VM, as in the classical approach, but on the dual AV-bundle
¢ (Axeh* = AT — Vv*M which can be recognized as T*M — T*M/(dr) and which
carries a canonical aff-Poisson structure induced from the canonical symplectic Poisson
bracket onr* M (cf. Example 5. The Hamiltonians are sections of this bundle. To compare
with the standard approach, let us assume that we have a decompésitor® x R of

the space—time into a product of space and time. This induces the decompd$ion:
T*Q x T*R. Sectiong of ¢ can be identified with functions (time-dependent Hamiltonians)
H=Ha,nyonV*M =T*QO xRbyoy (o, 1) = (a, t, —H(a, t) df). The dynamics induced

by the sectiory is, as inExample 5the projection of the dynamics @rf M induced by, .

The distinguished section @™ M is dt, so that the distinguished section in the AV-bundle
¢ is represented by-dr. Thus,

FO'H(as ts p) = H(ay t) + ps

where(z, p) are the standard Darboux coordinate3 fiR. The Hamiltonian vector field of

Fs, ONT*M is thereforeX g, + 9;, whereX g, is the Hamiltonian vector field off;(x) =

H(x,t) onT*Q, so we have recovered the correct dynamics. However, in our picture, the
term 9, is not added ‘by hand’ but it is generated frarg by means of the aff-Poisson
structure. Of course, if we have no decomposition into space and time, there is no canonical
d; on M and nothing canonical can be added by hand in the standard approach. This problem
disappears in the aff-Poisson formulation. In this example, Hamiltonians are sections of an
AV-bundle and Lagrangians are ordinary functions however not on a vector but on an affine
bundle.

Example 11. The last example is devoted to a Hamiltonian formulation of dynamics of
one massive particle in the Newtonian space—time[@iL1]). Even in a fixed inertial
frame, up to now, there was no satisfactory description of the dynamics in the Hamiltonian
formulation. First, we would like to present difficulties that appear while constructing the
description for the dynamics in an inertial frame and then we will show the solution in the
language of AV-geometry.

Let N be the Newtonian space—time i.e. a four-dimensional affine space equipped with a
covectorr being an element of the dual of the model vector spA@é) and an euclidean
metricsg on the kernel of. The covector is used for measuring time intervals between
events and the metrics measures spatial distance between simultaneous events. We will
denote the kernel of by Eg and the level-1 set of by E1. The vector spacéy is of
course a vector subspaceVfN) and E1 is an affine subspace d(N) modeled onEjp.

The elements of/1 are physical velocities of particles. On the other hand, every element of
E1 represents a class of inertial observers moving in the space—time with the same constant
velocity. Such class of observers will be called an inertial frame. The configuration space
for one massive particle 8§ x E;. Having an inertial frame, we can identify the affine
subspacé; with its model vector space, the phase space is generally acceptedl to Bg.

The correct phase equations for the potengiate:
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i=g (L) 4w, (41)
m
p = _dSw(x)v (42)

where(x, p, x, p) isanelementof (N x Eg) that can be identified with x E5 < V(N) x Ej.
The subscript in dmeans that we differentiate only in the spatial directions, i.e. vertical
with respect to the projection on time.

The standard Hamiltonian description is based on the factXhat Ej is a Poisson
manifold with the Poisson structure being reduced from the canonical Poisson structure of
T*N >~ N x V(N)*. The problem is that from the Hamiltonian

1
I (x, p) = 5 (p, P + o(x)

we obtain the vector field which is vertical with respect to the projection on time:

i=gt (’%) . h=—d).

Any vertical vector field cannot be a physical motion, so we have to add ‘by hand’ the
constant vector field. As in the previous example, this problem can be solved by replacing
the Poisson structure on the phase manifold by an affine Poisson structure. However, the
equations of motion as well as the affine Poisson structure depend on the choice of the
reference frame.

To get frame-independent formulation for the dynamics, let us consider first frame-
dependent Lagrangiafy. It is a function defined oV x E;

Cu(x,v) = 3m{g(v —u), v —u) — (x).

Let us look at the solution of this problem. df andu’ are two inertial frames then the
difference

Fuar®) = £ v) = . v) = m (g’ = ). v = J + )

is an affine function ot;. Now we define an equivalence relatiopin the setE1 x E1 x R
by

W, v,r) ~ WV, ) o v=0, r=r+ f0W).
The set of equivalence classes for will be denoted byAq. We observe that sincg, ,,/ is
an affine functionAg is an affine space of dimension 4. There is a projection frgnto
E1. The model vector space fdr is (E1 x Eg x R)\ ~,¢, where the equivalence relation

~y¢ IS in a sense the linear part of : we say that two elements, w, r) and(u’, w’, r’) of
E1 x Eg x R are equivalent if

w=w, r=r +migu—u),w).

In V(Ap) we distinguish an elementg = [u, 0, 1] so nowAg = (Ao, wo) iS a special
affine space an = N x Ag is a special affine bundle ovéf. The mapping

(x,v) = (x, [u, v, £,(x, v)])
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is a section oAV (A) and can be understood as frame-independent Lagrangian. Note that it
is no longer a function but a section of an AV-bundle. Any sectioA ckn be represented
in the form

x> X(x) = [u, X(x), r(x)],

where X is a vector field oW with values inE; andr is a function onN. We define a
bracket on sections & by the following formula

[X, V] = [u, [X, Y], Xs— Y1,

where X(x) = [u, X(x), r(x)] and ¥ (x) = [u, Y(x), s(x)]. The definition is correct. In-
deed, if we have other representatives) = [u/, X (x), r(x) — fi,.»(X(x))] andY(x) =
[, Y(x), s(x) — fu,u’(Y(x))]a then, Sincefu,u’ is aﬁ:ine:(EX(x)(fu,u’ o)) = (fuulv o
(Ex(n V) (x), where £y is the directional derivative in the directiofi(x) and(f, /)y is
the vector part off, ,». Moreover,(ExnY — £y X)(x) = [X, Y](x), so that we get

X(r— fu,u’ o) —Y(s— fu,u’ oX)=X(r) —Y(s) — (fu,u’)v o [X’ Y]s

that proves the correctness of the definition.
Having two vector fields\, Y with values inE1 we have

0= dD(X,Y) = X(z,Y) — Y(1, X) + (t. [X, Y]).

SinceX(t, Y) = Y(r, X) = O we obtain thatz, [X, Y]) = 0, i.e. [X, Y] € Ep. The bracket
of two sections ofA is therefore a section 0f (A) and it is easy to see that it is a Lie
affgebroid bracket with the anchor morphism A — TN defined as/([u, X, r]) = X.
Moreover, the sectiomyg is central for the bracket, i.eX[, wo]\z, = 0O for all X. Therefore,
according to theTheorem 23we have that the corresponding aff-Jacobi bracket on the
AV-bundle AV(A#) is aff-Poisson. We claim that this structure is the correct structure for
generating the equations of motion for the Hamiltonian formulation of the dynamics in
question.

Indeed,A* is by definitionAff (A, I). Like in the Lagrangian case, we will represent it
as the set of cosets of an appropriate equivalence relation. In the Bpacé; x R we
define an equivalence relatien, by

(u,p,s) ~p W', p,s) < p=p +mgu—u),
s=5+(pu—u)+ %m(g(u —u),u—u').

An equivalence class:[ p, s] represents an affine functidy,, , s on Ag given by
Eup.s)(u, v, 7D =(p,v—u)+s—r.

Its linear pari(&[,, ».«)v ([, w, r]) = (p, w) —r gives—1 while evaluated omo. The model
vector space foA’g is V(N)* with distinguished element We have:

[u, p.s] + 7 =[u, p+ (). s + (m u)],
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where. is the canonical projection frord(N)* on Ej. Let us denote by’ the space of
affine momenta, i.e. the spaéig x Ej/ ~ p for the relation

(u,p)~p W,p) < p=p +mgu—u).

We observe thahV (A¥) is an AV-bundle oveN x P. The frame-independent Hamiltonian
is a section oAV (A%):

('x7 [l/l, p]) = h((xv [Mv p]) = (X, [M, pv hu(x, p)])

Using the canonical aff-Poisson strugtureM(A#) we can generate out @&f an affine
derivation ofAV(A#), i.e. the section of (AV(A#)). This section projects to a vector field
on N x P thatis understood as the equation of motion.

Now, let us calculate the equations of motion in coordinates. For, we choose an inertial
frameu and the coordinates?®, x'), i = 1, 2, 3 such thay = u. By (p;) we denote the
adapted coordinates dif;. Using the inertial frame we have the following identifications:

Ag~ E1 x|, A>~NxE; x|, A#:NxEE‘,xI,

Sec(AV(A")) ~ C¥(N x E).
The bracket of sections of x £1 xR, hasthe obvious forn(k, &), (¥, 9)] = ([ X, Y], Xv—
Y¢). If the sections take values ity then the bracket takes valueshp. The affine function
onN x Eg that corresponds to the sectigK, &) is

tx.e @, p)=(p, X) - &
The Poisson bracket for functions corresponding to secti&n$), (Y, ©%) is given by the
formula

{txes ) = x.e.o) = (P, [X, Y]) — X0 + YE,

which in coordinates reads
{tx, )y = piXI;Y" — piY/9; X" + pidoY' — pidoX' — X009
—800 + Y'0;E + 9ok
From the above formula we obtain that
{h,-} = (@'h)d; + 30 — (3;h)d — doh.

The vector part of the above operator is exactly what we hégllipand (42)In this example
both, Hamiltonians and Lagrangians are sections of AV-bundles and not ordinary functions.
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