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Abstract

Based on ideas of W.M. Tulczyjew, a geometric framework for a frame-independent formulation
of different problems in analytical mechanics is developed. In this approach affine bundles replace
vector bundles of the standard description and functions are replaced by sections of certain affine
line bundles called AV-bundles. Categorial constructions for affine and special affine bundles as
well as natural analogs of Lie algebroid structures on affine bundles (Lie affgebroids) are inves-
tigated. One discovers certain Lie algebroids and Lie affgebroids canonically associated with an
AV-bundle which are closely related to affine analogs of Poisson and Jacobi structures. Homology
and cohomology of the latter are canonically defined. The developed concepts are applied in solving
some problems of frame-independent geometric description of mechanical systems.
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0393-0440/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.04.004



K. Grabowska et al. / Journal of Geometry and Physics 52 (2004) 398–446 399

1. Introduction

While there is no doubt about the role of analytical mechanics in explaining many prob-
lems in a variety of physical topics, it is worth stressing that classical mechanics is by no
meanspassé. It is still an open theory with several challenges and with an influence on
both: physics and mathematics. The standard formulation of analytical mechanics in the
language of differential geometry is based on geometrical objects of vector character. The
vector bundleTM of tangent vectors is used as a space of infinitesimal (dynamical) con-
figurations, the vector bundleT∗M of covectors plays the role of a phase space, and the
Poisson bracket derived from the symplectic form serve in the Hamiltonian formulation of
dynamics in which one uses the vector space (actually an algebra) of functions. However,
there are situations where one finds difficulties while working with vector-like objects. Here
we list some examples.

1. As the first example we describe the problems in the relativistic mechanics of a charged
particle in the external electromagnetic field. The standard LagrangianL is a function
on the space of infinitesimal configurationsTM : L(v) = −〈eA, v〉+m

√
g(v, v), where

A is the one-form representing the electromagnetic potential,m is the mass ande is
the charge of the particle. The Lagrangian depends on the gauge of the first type. An
electromagnetic potential is a connection in the principal bundle with the structure group
(R,+) over the space–time. To obtain the one-form representing the potential one has
to choose a section of the bundle (gauge). Changes in the gauge lead to changes in the
Lagrangian. The gauge independent description is possible only when we use affine
objects.

2. The configuration space (the space of events) for the inhomogenous formulation of
time-dependent mechanics is the space–timeM fibrated over the timeR. First-jets of
this fibration form the infinitesimal configuration space. Since there is the distinguished
vector field∂t on R, the first-jets of the fibration over time can be identified with those
vectors tangent toM which project on∂t . Such vectors form an affine subbundle of the
tangent bundleTM. The bundleV∗M, dual to the bundle of vectors which are vertical
with respect to the fibration over time, is the phase space for the problem. The phase
space carries a canonical Poisson structure, but Hamiltonian fields for this structure are
vertical with respect to the projection on time, so they cannot describe the dynamics. In
the standard formulation the distinguished vector field∂t is added to the Hamiltonian
vector field to obtain the dynamics. This can be done correctly when the fibration over
time is trivial, i.e. whenM = Q×R. When the fibration is not trivial one has to choose
a reference vector field that projects onto∂t . Changing the reference vector field means
changing the Hamiltonian. To have the description of the dynamic being independent on
the reference field one has to use affine objects.

3. Let us look on energy and momentum in the most classical case of Newtonian mechanics.
The Newtonian space–time is a four-dimensional affine spaceN with an absolute time
one-formτ ∈ (V(N))∗, which is a linear function on the model vector spaceV(N). The
dynamics is usually described in a fixed inertial frame. The inertial frames are represented
by vectorsu ∈ V(N) such thatτ(u) = 1, i.e.u is the space–time velocity of an inertial
observer associated with the inertial frame. The space of infinitesimal configurations, i.e.
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positions and velocities, isN × E1, whereE1 ⊂ V(N) consists of vectorsv satisfying
τ(v) = 1. Fixing an inertial frameu allows us to identifyE1 with E0 = Ker(τ) which
is a vector subspace ofV(N). Therefore we can define momenta as elements ofE∗0 =
(V(N))∗/〈τ〉. The momentum transforms according to the formulap′ = p + f(u, u′)
while changing the inertial frame. The transformation of energy is also affine, so we can-
not describe the dynamics in the frame-independent way as long as we keep representing
the momentum as a vector object. We need an affine object to replace the usual covector.
We can say that the covector in this case carries too much structure and we need additional
physical information (i.e. an inertial frame) to use it properly. But even in a fixed inertial
frame the standard description is not satisfactory, because the identification ofE1 with
E0 at the very beginning leads to the use of a wrong Poisson structure to generate equa-
tions of motion from the Hamiltonian. This is a situation similar to the previous example
(cf. [6,11]).

Of course, the above list of problems is not complete. Our aim is to develop the geo-
metric framework for correct approaches. The standard geometric constructions based on
the algebra of functions on a manifoldM are replaced by constructions based on the
affine space of sections of an affine bundleζ : Z → M, modeled on the trivial bun-
dle M × R. Such an affine bundle we will call abundle of affine values(AV-bundlein
short). The elements of the bundleZ replace number-values of functions but we are not
informed now what and where is zero for these values, so our “functions” do not form
any algebra or even a vector space. Such an approach forces deep changes in the lan-
guage, notions and canonical objects of differential geometry. We propose to call this
kind of geometrythe differential geometry of affine values(AV-differential geometryin
short).

An additional motivation comes from the observation that even canonical objects in the
traditional “vector geometry” happen to have an affine character, more or less hidden or
forgotten. Let us consider the canonical symplectic form on the cotangent bundleT∗M.
This 2-form is recognized as a linear object while, on the other hand, it is invariant with
respect to translations by closed forms on M that suggests its hidden affine character. Indeed,
it is possible to construct an affine analog ofT∗M, which is a symplectic manifold with
canonical symplectic structure and which seems to be more appropriate phase space for
many mechanical problems.

The idea of using affine bundles for the correct frame-independent geometric formulation
of analytical mechanics theories goes back to some concepts of Tulczyjew[21] (see also
[1,22,24]). We will also use in the paper some of unpublished ideas of W.M. Tulczyjew. A
similar approach to time-dependent non-relativistic mechanics (in the Lagrange formula-
tion) has been recently developed by Massa et al.[15,16,26], Mart́ınez et al.[12–14]. Our
paper is organized as follows.

In Section 2we present basic notions of the theory of affine spaces and relations to the
theories of special (resp., cospecial) vector spaces, i.e. the vector spaces with distinguished
a non-zero vector (resp., covector).

Basic categorial construction for affine spaces and special/cospecial vector spaces, like
direct sums, products, and tensor products, are presented inSection 3. To our surprise, we
could not find them in the literature.
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In Section 4, the main affine objects of our approach, namelyspecial affine spaces, i.e.
affine spaces modeled on special vector spaces are introduced together with the correspond-
ing notion of special duality.

One-dimensional special affine spaces, calledspaces of affine scalarsare of particular
interest. Some properties of such spaces are investigated inSection 5.

All above is extended to the case of bundles inSections 6 and 7. A special affine bundle
is a pairA = (A, v), whereA is an affine bundle overM and v ∈ Sec(V(A)) is a
nowhere-vanishing section of its model bundleV(A). Thedual special affine bundleA# is
the affine bundleAff(A; I) of special affine morphisms ofAm into the canonical special
affine bundleM × I, whereI = (R,1), i.e. those affine morphismsϕ : Am → R whose
linear part mapsv(m) into 1,m ∈ M, with the distinguished section of the model vector
bundle being 1A—the constant 1 function onA.

One-dimensional special affine bundles are calledAV-bundles. An important observa-
tion is that there is a one-to-one correspondence between the spaceSec(A) of sections
of a special affine bundleA and the spaceAff Sec(A#) of affine sections of the bundle
A# → A#/〈1A〉 which is canonically an AV-bundle. The affine sections are, of course,
those sectionsσ : A#/〈1A〉 → A# which are affine maps, i.a. morphisms of affine bundles.
This is a special affine analog of the well-known correspondence between sections of a
vector bundleE and linear functions on the dual bundleE∗.

In Section 8the phasePZ and the contact bundleCZ associated with an AV-bundleZ are
constructed. They are AV-analogs ofT∗M andT∗M ⊕ R and carry canonical symplectic
and contact structures, respectively. The AV-Liouville one-form which is the potential of the
canonical symplectic form onPZ is naturally understood as a section of an affine fibration
overPZ (cf. [25]).

Various Lie algebroids and Lie affgebroids (i.e. Lie algebroid-like objects on affine bun-
dles[2]) associated with a given AV-bundleZ are defined and studied inSections 9–11.
Let us mention the Lie algebroid̃TZ (an AV-analog of the Lie algebroid extensionLM =
TM ⊕ R of the canonical Lie algebroidTM of vector fields), the Lie algebroid̃LZ (an
AV-analog of the Lie algebroid extensionLM ⊕ R of the Lie algebroidLM = TM ⊕ R

of linear first-order differential operators onM) and their affine counterparts̄TZ andL̄Z.
One proves that the Lie algebroidL̃Z admits a canonical closed one-formφ0, i.e.L̃Z carries
a canonical structure of aJacobi algebroid(see[4,5,10]). It is also shown that sections
of T̃Z, or L̃Z, (resp., sections of̄TZ, or L̄Z) can be interpreted as affine derivations, or
affine first-order differential operators, on sections ofZ with values in functions onM
(resp., such derivations, or first-order differential operators, but with values in sections
on Z).

In Section 12we recall the definitions and basic facts on aff-Poisson and aff-Jacobi
brackets (cf.[2]), i.e. analogs of Poisson and Jacobi brackets, defined on sections of an
AV-bundleZ overM and taking values in the ring of smooth functionsC∞(M). The main
result is the correspondence between Lie affgebroid structures on a special affine bundle
A = (A, v) and aff-Jacobi brackets on the AV-bundleA# → A#/〈1A〉 which are affine in
the sense that the bracket of two affine sections is an affine function onA#/〈1A〉. This can
be viewed as an AV-analog of the fact that Lie algebroid brackets on a vector bundleE

correspond to linear Poisson brackets on the dual bundleE∗. In this picture, the Lagrange
formulation of a mechanical problem takes place on a special affine bundleA = (A, v)
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equipped with a Lie affgebroid structure, and the Lagrangians are sections of the AV-bundle
A → A/〈v〉. The Hamilton formalism, in turn, takes place on the dual special affine bundle
A# and the Hamiltonians are sections of the AV-bundleA# → A#/〈1A〉 which carries
a canonical aff-Jacobi structure. In most important examples this structure happens to be
aff-Poisson.

In Section 13we observe that aff-Poisson and aff-Jacobi structures on an AV-bundle
Z correspond tocanonical structuresΛ andJ for the Lie algebroidT̃Z and Jacobi alge-

broid L̃Z, respectively, i.e.Λ ∈ ∧2T̃Z, [[Λ,Λ]] T̃Z = 0 (resp.,J ∈ ∧2L̃Z, [[J,J]]φ
0

L̃Z
=

0), where [[·, ·]] T̃Z is the Lie algebroid Schouten bracket on∧•T̃Z (resp., [[·, ·]]φ0

L̃Z
is the

Schouten–Jacobi bracket of the Jacobi algebroid(L̃Z, φ0)). This is an AV-analog of the
well-known identification of Poisson brackets onC∞(M) with Poisson tensors onM, i.e.
bivector fields with the Schouten–Nijenhuis square being 0. The known results on charac-
terization of canonical structures for Lie and Jacobi algebroids[5,9] allow one to derive an
analogous characterization for aff-Poisson and aff-Jacobi brackets. In particular, one can
define the corresponding homology and cohomology in a natural way.

In Section 14we present solutions of the mentioned problems of the frame-independent
geometric formulation in analytical mechanics with the use of developed concepts. These
solutions form an alternative to the Kaluza–Klein approach where the vector-like formula-
tions is kept for the price of extending the dimension (see also[17,20,21].

Much of this material is to our knowledge new. Our aim was to present a possibly complete
picture which can be viewed as a well-described mathematical program based on the ideas
and needs from analytical mechanics.

2. Category of affine spaces

An affine spaceis a triple(A, V, α), whereA is a set,V is a vector space over a fieldK
andα is a mappingα : A× A→ V such that

• α(a3, a2)+ α(a2, a1)+ α(a1, a3) = 0;
• the mappingα(·, a) : A→ V is bijective for eacha ∈ A.

We shall also write simplyA to denote the affine space(A, V, α) andV(A) to denoteV .
One can also say that an affine space is a set with a free and transitive action of a vector
space (which is viewed as a commutative group with respect to addition). Bydimension
of A we understand the dimension ofV(A). If (A, V, α) then also(A, V,−α) is an affine
space. We will write for brevitȳAa to denote theadjoint affine space(A, V,−α). We will
write alsoa2−a1 instead ofα(a2, a1) anda+v to denote the unique pointa′ ∈ A such that
a′ − a = v, v ∈ V(A). Of course, every vector space is canonically an affine space modeled
on itself with the affine structureα(v1, v2) = v1 − v2. The adjoint affine spacēAa can be
viewed as the same setA with the opposite action ofV(A): a �→ a− v.

It is easy to see that for any linear subspaceV0 of V the setA/V0 of cosets ofA with
respect to the relationa ∼ a′ ⇔ a − a′ ∈ V0 is canonically an affine space modeled on
V/V0.
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A subsetA′ of A is anaffine subspacein A if there is a linear subspaceV(A′) of V(A)
such thatA′ = a′ + V(A′) for certaina′ ∈ A′. Affine subspaces are canonically affine
spaces with the affine structure inherited fromA.

If A′ is an affine subspace ofA then the quotient spaceA/A′ is understood asA/V(A′)
with distinguished point being the class ofA′. HenceA/A′ can be identified with the linear
spaceV(A)/V(A′).

Morphisms in the category of affine spaces are affine maps. LetA andA′ be affine spaces.
We say that a mappingϕ : A→ A′ is affineif there is a linear mappingϕv : V → V ′ such
that

ϕ(a+ v) = ϕ(a)+ ϕv(v).

We say thatϕv is thelinear partof ϕ.
More generally, on every affine space instead of the subtractiona1−a2, one can consider

vector combinationof elements ofA, i.e. the combination
∑

i λiai, whereai ∈ A, λi ∈ K,
and

∑
i λi = 0. Every vector combination of elements ofA defines a unique element of

V(A) in obvious way. Similarly, one can consideraffine combinations(called alsobarycen-
tric combinations) of elements ofAwhich have formally the same form but with

∑
i λi = 1.

An affine combination determines uniquely an element ofA. Affine maps may be equiva-
lently defined as those maps which respect affine combinations. Note however that affine
combinations do not determine the affine structure completely:A andĀa have the same
affine combinations. The setAff(A;A′) of all affine maps fromA intoA′ is again an affine
space modeled on the vector spaceAff(A;V(A′)) of affine maps fromA into the model
vector spaceV(A′) of A′: for ϕ1, ϕ2 ∈ Aff(A1;A2) we put(ϕ1− ϕ2)(a) = ϕ1(a)− ϕ2(a).
Inductively, the setAffk(A1, . . . , Ak;A) of k-affine maps fromA1 × · · · × Ak into A is
defined as the setAff(A1;Affk−1(A2, . . . , Ak;A)). Like in the linear case, one proves that
Affk(A1, . . . , Ak;A) can be identified with the space of of mapsF : A1× · · · × Ak → A

which are affine with respect to every variable separately. By

Fi
v : A1× · · · × V(Ai)× · · · × Ak → V(A)

we denote the linear part ofF with respect to theith variable. It is linear onV(Ai) and
affine with respect to each of the remaining variables separately. The higher-order linear
partsFi1,... ,il

v are defined in obvious way. The multilinear map

F
1,... ,k
v : V(A1)× · · · × V(Ak)→ V(A)

we denote simply byFv.
A free affine spaceA = A({aj}j∈J )generated by the set{aj : j ∈ J} is an affine subspace

in the free vector space generated by{aj : j ∈ J}, i.e. in the the vector spaceV({aj}j∈J ) of
formal linear combinationsv =∑

j λjaj, described by the equation 1A(v) = 1, where 1A
is the linear functional onV({aj}j∈J ) defined by 1A(v) =

∑
j λj. The notation is justified

by the fact that this functional is constantly 1 onA. The model vector space for this free
affine space is a linear subspace ofV({aj : j ∈ J}) being the kernel of the functional 1A.
Every affine spaceA is actually isomorphic to the free affine space generated by a subset
of A which we call abasisof A. A subset{aj : j ∈ J} is a basis ofA if every element of
A can be expressed uniquely as an affine combination of elements of the basis. Existence
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of a basis can be proved analogously to the linear case, since{aj : j ∈ J} is a basis ofA
if and only if {aj − aj0 : j ∈ J ′} is a basis ofV(A), wherej0 ∈ J andJ ′ = J \ {j0}. The
dimension ofA is the cardinality of a basis minus 1.

Every affine spaceA is canonically embedded as an affine hyperspace into a vector space
Â which we call thevector hullof A. The vector hullÂ is defined as the quotient space
V(A)/V0(A) of the free vector spaceV(A) generated byA by its subspace spanned by linear
combinations of the form 1· (a + λ(a′ − a′′)) − 1 · a − λa′ + λa′′. Here the expression
(a+ λ(a′ − a′′)) is viewed as an element ofA. SinceA is canonically embedded intoV(A)
as a set, we have a canonical map fromA into Âwhich can be proved to be an embedding of
the affine space onto anaffine hyperspace, i.e. a one-codimensional affine subspace which
is proper (does not contain 0), ofÂ. This hyperspace can be equivalently defined as the
level-1 set of the functional 1A : Â→ K represented by the sum of coefficients onV(A).
We will not denote this embedding in a special way just regardingA as a subset of̂A. The
model vector spaceV(A) is also canonically embedded in̂A as the kernel of 1A.

Choosing a basis{aj : j ∈ J} of A we get an isomorphism of̂A with V({aj : j ∈ J}).
Note that for a vector spaceV viewed as an affine space its vector hullV̂ is canonically
isomorphic toV ⊕ K. This decomposition follows from the existence of a distinguished
element 0∈ V which is a non-zero vector in̂V complementary toV(V) � V . It is obvious by
construction that the vector hull is unique up to isomorphism, so that we have the following
theorem.

Theorem 1. Every affine spaceA is canonically embedded as an affine hyperspace of the
vector spacêA—its vector hull. Conversely, if A is embedded as an affine hyperspace of a
vector spaceW , then there is a canonical isomorphismΦ : Â→ W which reduces to the
identity map on the embeddedA.

For vector spacesV1, V2 we denote byHom(V1;V2) the space of morphisms (linear maps)
from V1 into V2 and byHomA2

A1
(V1;V2) the subset of those morphismsΦ ∈ Hom(V1;V2)

which map the subsetA1 of V1 into the subsetA2 of V2.

Theorem 2. For an affine spaceA and a vector spaceV there are canonical identifications

(a) Aff(A, V) � ϕ �→ ϕ̂ ∈ Hom(Â, V).

In particular, the vector spaceA† = Aff(A,R) is canonically isomorphic tôA∗, and
(b) Aff(A1, A2) � ϕ �→ ϕ̂ ∈ HomA2

A1
(Â1, Â2)

for affine spacesA1, A2.

Proof. We put simplyϕ̂(
∑

i λiai) =
∑

i λiϕ(ai) for λi ∈ K, ai ∈ A, soϕ = ϕ̂|A. There are
obvious embeddings

Aff(A1, A2) ⊂ Aff(A1, Â2) ⊂ Hom(Â1, Â2)

and it is easy to see thatAff(A1, A2) is characterized insideHom(Â1, Â2) as the set of those
morphisms which mapA1 intoA2. �
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The vector spacêA has a distinguished affine hyperspaceA. Such an affine subspace
is uniquely determined by the nonzero functional 1A ∈ Â∗ as its level-1 set:A = {v ∈
Â : 1A(v) = 1}. Thus Â = (Â,1A) is an example of acospecial vector space, i.e. a
vector space with a distinguished affine hyperspace, or, equivalently, as a vector space with
a distinguished non-zero linear functional. On the other hand, its vector dualÂ∗, which is
canonically identified withA† = Aff(A,K), is aspecial vector space, i.e. a vector space
with a distinguished non-zero element. We will denote this special vector space byA† =
(A†,1A) and call it thevector dualof A. In finite dimension we have a true duality between
affine spaces and special vector spaces. Indeed, every special vector spaceV = (V, v0)

defines an affine hyperspaceV‡ = {u ∈ V ∗ : u(v0) = 1} in the dualV ∗ of V . Since in
finite dimension(V ∗)∗ = V , we have the following theorem.

Theorem 3. For finite-dimensional special vector spaceV and finite-dimensional affine
spaceA there are canonical isomorphisms

((V‡)†,1V‡) � V

and

(A†)‡ � A.

The vector hull Âff(A1, A2) of Aff(A1, A2) can be interpreted as the vector

spaceĤom(Â1, Â2) of those linear mapsF : Â1 → Â2 for which F∗(1A2) = λ1A1

for certainλ ∈ K.
Special (resp., cospecial) vector spaces form a category with the set of morphisms

Hom(V1,V2) betweenVi = (Vi, v
0
i ) (resp.Vi = (Vi, ϕi)), i = 1,2, consisting of those

linear mapsF : V1 → V2 for which F(v0
1) = v0

2 (resp.,F∗(ϕ2) = ϕ1). The condition
F∗(ϕ2) = ϕ1 means thatF maps the points of the affine hyperspaceA1 = {ϕ1(u1) = 1}
of V1 into the affine hyperspaceA2 = {ϕ2(u2) = 1} of V2. There is a canonical covariant
equivalence functor from the category of cospecial vector spaces into the category of affine
spaces. It associates with any cospecial vector space(V,A) its affine hyperspaceA, and
with every morphismF : (V1, A1)→ (V2, A2) its restriction toA1 (which is an affine map
into A2). Conversely, with every affine spaceA we associate its vector hull̂A with A as
the distinguished affine hyperspace and with every affine mapF : A1 → A2 its (unique)
extension to a linear map from̂A1 into Â2. In finite dimensions we can use the duality and
obtain a contravariant equivalence functor from the category of special vector spaces to the
category of affine spaces. This functor associates with a special vector spaceV = (V, v0)

the affine hyperspaceV‡ inV ∗. We will use these equivalences to construct categorial object
for the affine category exploring (generally better) knowledge of the linear category.

3. Categorial constructions for affine spaces

In the category of special vector spaces and, consequently, in the category of cospe-
cial vector spaces and the category of affine spaces there are direct sums and products.
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We will just describe the models leaving the obvious proofs to the reader. The construc-
tions are very natural but, to our surprise, we could not find explicit references in the
literature.

For special vector spacesVi = (Vi, v
0
i ), i = 1,2, their productV1×svV2 is represented

by the standard productV1×V2 with the distinguished vectorv0 = (v0
1, v

0
2). The projections

πi : V1× V2 → Vi mapv0 ontov0
i , i.e. represent morphisms of special vector spaces.

Thespecial directsumV1⊕svV2 is represented by the quotient vector spaceV1⊕V2/〈v0
1−

v0
2〉 with the distinguished vector being the class [v0

1] of v0
1 (or, equivalently, the class [v0

2]
of v0

2). The embedding ofVi is represented by the embedding ofVi in V1⊕ V2 composed
with the projection.

By duality, for cospecial vector spacesVi = (Vi, ϕ
0
i ), i = 1,2, itscospecial direct sum

V1⊕cvV2 is represented by the vector spaceV1 ⊕ V2 with the distinguished functional
ϕ0 = (ϕ0

1, ϕ
0
2) ∈ V ∗1 × V ∗2 = (V1 ⊕ V2)

∗ and obvious embeddings ofVi. The product
V1×cvV2, in turn, is represented by the linear hyperspace inV1 × V2 being the kernel
of ϕ0

1 − ϕ0
2 ∈ V ∗1 ⊕ V ∗2 = (V1 × V2)

∗ and equipped with the distinguished functional
ϕ0 = (ϕ0

1)|Ker(ϕ0
1−ϕ0

2)
= (ϕ0

2)|Ker(ϕ0
1−ϕ0

2)
. The projections from Ker(ϕ0

1 − ϕ0
2) ontoVi are

just restrictions of projections fromV1 × V2. They give rise to cospecial morphisms from
V1×cvV2 ontoVi.

The above constructions allow us to recognize the products and sums in the category
of affine spaces. Theaffine productA1×aA2 in this category is the standard Cartesian
productA1×A2 which is an affine space modeled onV(A1)×V(A2), (a1, a2)−(a′1, a

′
2) =

(a1− a′1, a2− a′2). The direct sumA1⊕aA2 is the affine hyperspace in̂A1⊕ Â2 generated
by the affine subspacesA1, A2 which are canonically embedded, i.e.

A1
a⊕A2 = {λ1a1+ λ2a2 ∈ Â1⊕ Â2 : a1 ∈ A1, a2 ∈ A2, λ1+ λ2 = 1},

with obvious embeddings ofA1 andA2.

Theorem 4. We have canonical isomorphisms

̂
(A1

a×A2) � Â1
cv×Â2, (1)

̂
(A1

a⊕A2) � Â1
cv⊕Â2, (2)

(A1
a×A2)

† � A
†
1

sv⊕A†
2, (3)

(A1
a⊕A2)

† � A
†
1

sv×A†
2, (4)

where the vector hulls and the vector duals are regarded as cospecial and special vector
spaces, respectively.

In the category of affine spaces we can defineaffine tensor productsA1⊗a · · · ⊗aAk

which are affine spaces such thatAffk(A1, . . . , Ak;A) = Aff(A1⊗a · · · ⊗aAk;A). Like
in the linear case,A1⊗a · · · ⊗aAk can be defined as the quotient of the free affine space
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A(A1× · · · × Ak) by the linear subspace of its model vector space generated by elements
of the form

(a1, . . . , ai + λ(a′i − a′′i ), . . . , ak)− (a1, . . . , ai, . . . , ak)− λ(a1, . . . , a
′
i, . . . , ak)

+λ(a1, . . . , a
′′
i , . . . , ak).

One can also say thatA1⊗a · · · ⊗aAk is the affine subspace in̂A1⊗ · · · ⊗ Âk spanned by
tensors of the forma1⊗· · ·⊗ak, whereai ∈ Ai. The tensor productA1⊗a · · · ⊗aAk may be
viewed also as the affine hyperspace in the standard tensor productÂ1⊗· · ·⊗Âk determined
by the functional 1A1⊗· · ·⊗1Ak

and the associated vector spaceV(A1⊗a · · · ⊗aAk) is the
kernel of 1A1⊗· · ·⊗1Ak

. It is easy to see thatV(A1⊗a · · · ⊗aAk) is additively generated by
tensorsa1⊗· · ·⊗vi⊗· · ·⊗ak fromÂ1⊗· · ·⊗Âk, whereaj ∈ Aj,vi ∈ V(Ai). This is indeed
a vector space, sinceλ(a1⊗· · ·⊗vi⊗· · ·⊗ak) is represented bya1⊗· · ·⊗λvi⊗· · ·⊗ak.
If we fix a0

i ∈ Ai, then

A1
a⊗ · · · a⊗Ak = a0

1⊗ · · · ⊗ a0
k + ⊕

i1<···<il
a0

1⊗ · · · ⊗ V(Ai1)⊗ · · ·

⊗V(Ail )⊗ · · · ⊗ a0
k.

Sometimes we will writea1⊗a · · · ⊗aak for the affine tensor product represented bya1 ⊗
· · · ⊗ ak ∈ Â1⊗ · · · ⊗ Âk to stress that we are dealing with an element ofA1⊗a · · · ⊗aAk.
The canonical map

A1× · · · × Ak � (a1, . . . , ak) �→ a1
a⊗ · · · a⊗ak ∈ A1

a⊗ · · · a⊗Ak

is a multi-affine map. Note that for vector spacesVi there is a canonical identification of
V1⊗a · · · ⊗aVk with ((V1⊕K)⊗ · · · ⊗ (Vk ⊕K)) (K⊗ · · · ⊗K). For the dimension we
have the formula

dim(A1
a⊗ · · · a⊗Ak) = (dim(A1)+ 1) · · · (dim(Ak)+ 1)− 1.

Like in the linear case, we have natural isomorphisms

A1
a⊗A2 � A2

a⊗A1, (5)

A1
a⊗(A2

a⊗A3) � (A1
a⊗A2)

a⊗A3, (6)

̂
A1

a⊗A2 � Â1⊗ Â2, (7)

(A1
a⊗A2)

† � (A1)
†⊗ (A2)

†. (8)

To define affine skew-symmetric tensor product(∧a)kA for k > 1, let us observe first that
the symmetric groupSk acts naturally onA⊗ak. ByAk

0 we denote its affine subspace spanned
by tensors of the forma1⊗a · · · ⊗aak, whereai = aj for certaini != j, i.e. invariant with
respect to a transposition. We put

(

a∧
)kA = A⊗

ak/Ak
0
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which is canonically a vector space (see the previous section). It follows directly from
definition that any element ofAff((∧a)kA;A′) represents a multi-affine mappingF : A×
· · · × A→ A′ (an element ofAff(A⊗ak;A′)) which is constant onAk

0, i.e. constant on the
set of those(a1, . . . , ak) for whichai = aj for certaini != j.

It is a standard task to prove that such multi-affine mappings areskew-symmetricin the
sense that

F
σ−1(1)
v ((aσ(1), . . . , v, . . . , aσ(k)) = sgn(σ)F1

v (v, a2, . . . , ak)

for any permutationσ ∈ Sk anda2, . . . , ak ∈ A, v ∈ V(A). It is easily seen that, fork > 1,
the affine wedge product(∧a)kA is canonically isomorphic to the standard exterior power
∧kÂ. To put it simpler, one can also say that(∧a)kA is the affine subspace in∧kÂ generated
by tensorsa1 ∧ · · · ∧ ak, ai ∈ A, which happens to be the whole∧kÂ.

4. Special affine spaces and special duality

A special affine spaceA = (A, v0) is an affine spaceA modeled on a special vector
spaceV(A) = (V(A), v0). Theadjoint special affine spacēA = (A,−v0) is modeled on
theadjoint special vector spacēV = (V,−v0).

Let A = (A, v0) andAi = (Ai, v
0
i ), i = 1, . . . , k, be special affine spaces with the

distinguished vectorsv0 ∈ V(A), v0
i ∈ V(Ai). By Aff(A1;A) we denote the space of

special affine mapsϕ : A1 → A. It is canonically a special affine space, since the constant
map onto{v0} is naturally distinguished inV(Aff(A1;A)) = Aff(A1,V(A)). Inductively,
we put

Affk(A1, . . . ,Ak;A) = Aff(A1;Affk−1(A2, . . . ,Ak;A))

for the space ofk-special affine maps fromA1 × · · · × Ak into A, which consists of maps
F : A1× · · · ×Ak → A which are special affine with respect to every variable separately.

The vector hull of a special affine space is canonically abispecial vector space, i.e. a
vector spaceV with a distinguished non-zero vectorv0 ∈ V and a distinguished non-zero
covectorϕ0 ∈ V ∗ (or an affine hyperspaceA) such thatϕ0(v0) = 0 (or v0 ∈ V(A)).
Morphisms between bispecial vector spacesVi = (Vi, v

0
i , ϕ

0
i ), i = 1,2, are those linear

mapsF : V1 → V2 which respect the distinguished vectors and covectors:F(v0
1) = v0

2,
F∗(ϕ0

2) = ϕ0
1.

In finite dimensions we have the obvious equivalence between the category of special
affine spaces and the category of bispecial vector spaces. Since the category of bispecial
vector spaces, which is canonically equivalent to the category of special affine spaces, is
self-dual with the obvious duality(V, v0, ϕ0)# = (V ∗, ϕ0, v0), we have the natural duality
A ↔ A# in the category of special affine spaces. The dualA# of the special affine space
A = (A, v0) is thus the affine hyperspace in(Â)∗ = A† defined as the level-1 set of the
functionalv0 (we use the embeddinĝA ⊂ Â∗∗) and equipped with the vector 1A, 1A(A) = 1,
of its model vector space. In other words,

A# = Aff(A, I),
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whereI = (K,1) is the canonical special vector space, with canonically chosen map 1A in
V(Aff(A, I)). Let us observe that 1A really belongs to the model vector space forA#, since
the latter consists of those affine mapsϕ : A→ K whose linear part vanishes onv0, i.e.

V(A#) = {ϕ ∈ Aff(A,K) : ϕv(v
0) = 0} = Aff(A/〈v0〉;K)

= {ϕ̂ ∈ Hom(Â;K) : ϕ̂(v0) = 0} = Hom(Â/〈v0〉;K).

The bispecial interpretation of the special affine duality yields immediately the canonical
isomorphism(A#)# = A. Note also that one can viewI as{∗}†, where{∗} is a single-point
affine space, and that the mapϕ �→ −ϕ establishes a canonical isomorphism

A# � Ā#.

A special affine pairingbetween special affine spacesA1 andA2 is a special biaffine map

Φ : A1× A2 → I

for which the corresponding maps

Φl : A1 → A#
2 = Aff(A2, I), Φl

a1
(a2) = Φ(a1, a2),

and

Φr : A2 → A#
1 = Aff(A1, I), Φr

a2
(a1) = Φ(a1, a2)

are isomorphisms (in finite dimension it is sufficient that they are injective). An example is
given by the canonical special affine pairing of dual special affine spaces

〈·, ·〉sa : A× A# → I, 〈a, ϕ〉sa= ϕ(a) = a(ϕ)

This is just the restriction of the pairing betweenÂ andÂ# = A† = Â∗ to the product of
affine hyperspacesA × A#. Note that every special affine mapψ ∈ Aff(A1;A2) has its
dualψ# ∈ Aff(A#

2;A#
1) defined by

〈a1, ψ
#(a#

2)〉sa= 〈ψ(a1), a
#
2〉sa.

Note also that the concept of special vector spaces and the corresponding duality has been
introduced in[24].

Since morphisms of bispecial vector spaces are linear maps which are simultaneously
morphisms of special and cospecial structures, we can combine the constructions of the
previous section to get products, direct sums, and tensor products in the category of special
affine spaces.

Recall that the special direct sumV1⊕svV2 is represented by the quotient vector space
V1⊕V2/〈v0

1− v0
2〉 with the distinguished vector being the class [v0

1] of v0
1 (or, equivalently,

the class [v0
2] of v0

2). A similar constructionA1�A2 = ((A1×A2)/〈(v0
1,−v0

2)〉, [(v0
1, v

0
2)])

we can perform in the category of special affine spaces. The model space forA1 � A2,
which will be called thereduced product, is canonically isomorphic withV(A1)⊕svV(A2).
However,A1 � A2 is not the direct sum in the category of special affine spaces which will
be constructed in a while. The class ofu+ v in V(A1)⊕svV(A2) (resp., the class of(a1, a2)
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in A1 � A2) we will denote byu⊕svv (resp.,a1 � a2). Note that any special affine pairing
Φ : A1 × A2 → I is constant on fibers of the canonical projectionA1×aA2 → A1 � A2.
The notion of the reduced product is useful because of the following fact which can be
easily derived fromTheorem 4(3).

Theorem 5. For special affine spacesAi, i = 1,2, we have

(A1 � A2)
# � A#

1 � A#
2.

In particular, for any affine spaceA and A1 = A×aI, one hasA×aA2 = A1 � A2 and
consequently

(A
a×A2)

# � A† � A#
2.

For special affine spacesAi = (Ai, v
0
i ), i = 1,2, theirspecial affine direct sumA1⊕saA2

is represented by the affine space(A1⊕aA2)/〈v0
1−v0

2〉modeled on Ker(1A1+1A2)/〈v0
1−v0

2〉
in (Â1 ⊕ Â2)/〈v0

1 − v0
2〉 with the distinguished vectorv0 ∈ (Â1 ⊕ Â2)/〈v0

1 − v0
2〉 being

the class [v0
1] of v0

1 (or, equivalently, the class [v0
2] of v0

2). There are obvious special affine
embeddings ofAi into A1⊕saA2, i = 1,2.

Thespecial affine productA1×saA2 is represented byA1×aA2 modeled onV(A1)×sv

V(A2)with distinguished vectorv0 = (v0
1, v

0
2) in V(A1)×V(A2). The special affine projec-

tions fromA1×saA2 ontoAi, i = 1,2, are obvious. Note that the dimensions ofA1⊕saA2
and A1×saA2 are equal, but the model vector spaces are different (we have inclusion
V(A1) × V(A2) ⊂ Ker(1A1 + 1A2), but v0

1 − v0
2 ∈ V(A1) × V(A2)). However, like for

vector spaces, they are related by duality.

Theorem 6. There are canonical isomorphisms

(A1
sa×A2)

# � A#
1

sa⊕A#
2, (9)

(A1
sa⊕A2)

# � A#
1

sa×A#
2. (10)

For special multi-affine morphisms fromA1× · · · ×Ak we have a representing object, the
special affine tensor productA1⊗sa · · · ⊗saAk, such that

Affk(A1, . . . ,Ak;A) = Aff(A1
sa⊗ · · · sa⊗Ak;A).

This is the quotient of the affine tensor productA1⊗a · · · ⊗aAk by the linear subspace of
V(A1⊗a · · · ⊗aAk) spanned by tensors

a1
a⊗ · · · a⊗v0

i

a⊗ · · · a⊗ak − b1
a⊗ · · · a⊗v0

j

a⊗ · · · a⊗bk,
whereal, bl ∈ Al. In the special affine case dim(A1⊗saA2) = dim(A1) · dim(A2). The
canonical map

A1× · · · × Ak � (a1, . . . , ak) �→ a1
sa⊗ · · · sa⊗ak ∈ A1

sa⊗ · · · sa⊗Ak,
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wherea1⊗sa · · · ⊗saak is the coset ofa1⊗a · · · ⊗aak, is a special multi-affine map. We have
obvious canonical isomorphisms

A1
sa⊗A2 � A2

sa⊗A1, A1
sa⊗(A2

sa⊗A3) � (A1
sa⊗A2)

sa⊗A3, (A1
sa⊗A2)

# = A#
1

sa⊗A#
2.

Note that there are no specialk-affine and skew-symmetric mapsF : A× · · · × A → A′,
A = (A, v0), A′ = (A′, v′) for k > 1, since specialk-affine implies thatF1

v (v
0, a, . . . ) =

F2
v (a, v

0, . . . ) = v′ and skew-symmetry thatF1
v (v

0, a, . . . ) = −F2
v (a, v

0, . . . ), sov′ = 0;
a contradiction.

Starting with an object in vector or affine category we can always construct canonically
an object in the special category just by taking the product withI = (R,1). For example,
given an affine spaceA we can define itsspecializationSA as the special affine spaceSA =
(A×aI, (0,1))modeled on the specializationSV(A) = (V(A)×I, (0,1)) of the model space
for A. Using the specialization we can describe certain canonical constructions in affine
category in the language of the special affine category. Note that in this languageI = S{∗},
where{∗} is a one-point affine space.

Theorem 7. For affine spacesA,A1, A2 there are canonical isomorphisms

(a) S#
A � A†, (11)

(b) ŜA � S
Â
, (12)

(c) SA1⊕aA2 � SA1

sa⊕SA2, (13)
(d) SA1×aA2 � SA1 � SA2. (14)

Proof. The proof is straightforward and we will prove only (a) leaving the rest to the reader.
Since anyϕ ∈ S#

A = Aff(SA; I) is an affine map characterized byϕ(a, r) = ϕ(a,0) + r,
there is a one–one correspondence

S#
A � ϕ �→ ϕ† ∈ A†

given byϕ†(a) = ϕ(a,0). It is obvious that(ϕ+1SA)
† = ϕ†+1A, so this is an isomorphism

of special affine spaces. �

5. Spaces of affine scalars

In this section we will consider one-dimensional special affine spacesZ = (Z, v0).
Since the model vector spaceV(Z) is one-dimensional and special, we can identify it with
I = (K,1). In what follows we assume thatZ is modeled onI. In this picture the adjoint
special affine spacēZ is isomorphic to(Z̄a,1), i.e. Z̄ is Z with the same distinguished
vector but with the adjoint affine structure:σ −0 σ

′ = σ′ − σ (or σ +0 r = σ + (−r)).
The points ofZ are like numbers, i.e. elements ofK, but the origin 0 is not fixed, so only
the difference of points makes sense as a number or, equivalently, we can add numbers to
points ofZ. We will call Z aspace of affine scalars. Of course, any pointσ0 ∈ Z defines the
isomorphismIσ0 : Z → I, σ �→ σ− σ0, of special affine bundles. We can consider also the
mapF : Z→ Z† = Aff(Z,K) given byFσ(σ

′) = σ−σ′. The following is straightforward.
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Theorem 8. The mapσ �→ Fσ induces a canonical isomorphismF : Z → Z̄# represented
by the special affine pairing

Z× Z̄ � (σ, σ′) = Fσ(σ
′) = σ − σ′ ∈ I.

This isomorphism extends by linearity to an isomorphismF : Ẑ → Z† of special vector
spaces.

There are canonical geometric structures on the space of affine numbersZ. Since a
translation of a polynomial function onK is a polynomial function, the algebra Pol(Z) of
polynomial functions onZ is well-defined. It is generated by affine functions onZ. There is a
canonical ‘vector field’ (derivation of Pol(Z)) onZ being the ‘fundamental vector field’XZ
of theK-action onZ,σ �→ σ+s. With respect to any ‘global coordinate system’Iσ : Z → K

this vector field has the formXZ = −∂s, where∂s(sn) = nsn−1 for s being the standard
coordinate inK. We can also consider a Jacobi structure onZ with the corresponding Jacobi
bracket

{f, g}Z = fXZ(g)− gXZ(f) (15)

on Pol(Z). Of course, in the caseK = R one can understandXZ as a true vector field onZ
and the bracket{·, ·}Z can be understood as a bracket defined on the algebraC∞(Z) of all
smooth functions onZ.

Proposition 1.

(a) For all σ, σ′ ∈ Z:

{Fσ,Fσ′ }Z = Fσ(σ
′) = σ − σ′; (16)

(b) For all φ ∈ Z† and allσ ∈ Z:

{φ,Fσ}Z = φ(σ). (17)

Proof. Let us identifyZ with I by fixing certainσ0 ∈ Z and lets be the linear coordinate
on I. Then,Fσ(s) = σ − s and, forφ(s) = as+ b, we have

{as+ b, σ − s}Z = −(as+ b)∂s(σ − s)+ (σ − s)∂s(as+ b) = (aσ + b) = φ(σ)

that proves (a). Part (b) follows from (a) easily. �

Note that the vector spaceZ† � Ẑ is two-dimensional but there is no canonical basis.
Instead, we have the canonical exact sequence

0→ I → Z† → I → 0,

where the inclusion isI � λ �→ λ1Z and the projectionZ† � φ �→ −XZ(φ) ∈ I gives the
‘directional coefficient’ of affine functions. The affine subspaceZ# in Z† is characterized
as the family of affine functionsφ on Z for whichXZ(φ) = −1. Similarly, the image ofZ
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under the isomorphismF : Ẑ → Z† is characterized byXZ(φ) = 1. The Jacobi bracket
(15)describes the pairing betweenZ† andẐ.

Theorem 9. For all φ ∈ Z† and allu ∈ Ẑ:

{φ,Fu}Z = 〈φ, u〉. (18)

Proof. The theorem follows easily from(17)by linearity. �

Remark. We cannot add two affine scalars. However, for spacesZ, Z′ of affine scalars we
can introduce an equivalence relation inZ× Z′ by

(z, z′) ∼ (z1, z
′
1)⇔ z− z1 = z′1− z′

and interpret the equivalence class of(z, z′) as a sum ofz andz′. We recognize the space
of such equivalence classes asZ � Z′. Let us remark that this concept of addition of affine
scalars is already present in[23].

6. Affine and special affine bundles

All above can be formulatedmutatis mutandisfor affine bundles instead of affine spaces.
HereK = R and affine bundles are smooth bundles of affine spaces which are locally trivial,
so that we pass from one local trivialization to another using the group of affine transfor-
mations. Since we do everything fiberwise over the same base manifoldM and consider
only morphisms over the identity map on the base (if not explicitly stated otherwise), this
generalization is straightforward and we use, in principle, the same notation. For instance,
V(A) denotes the vector bundle which is the model for an affine bundleζ : A→ M over
a base manifoldM. By Sec we denote the spaces of sections, e.g.Sec(ζ) (or sometimes
Sec(A)) is the affine space of sections of the affine bundleζ : A → M. This time, how-
ever, we must distinguish the bundles of morphisms likeAffM(A1, A2), HomM(V1, V2),
etc., from their spaces of sections which consist of particular morphisms. We will write
shortly Aff(A1, A2) instead ofSec(AffM(A1, A2)), etc., andA† = AffM(A,R) (resp.,
V ∗ = HomM(V,R)) instead ofAffM(A,M × R) (resp.,HomM(V,M × R)) andAff(A)
(resp.,Lin(V)) for the space of sections—affine functions onA (resp., linear functions
onV ).

Every sectionv of the model vector bundleV(A) induces a vertical vector fieldvA on
A (called thevertical lift of V ) being the generator of the one parameter group of transla-
tionsA � σm �→ σm + sv(m). Of course,v is uniquely determined byvA. By a special
vector bundlewe understand, clearly, a vector bundle with a distinguished nowhere van-
ishing section. Consequently, aspecial affine bundleis an affine bundle modeled on a
special vector bundle, etc. Every special affine bundleA = (A, v0) carries a distinguished
vertical vector fieldXA = −v0

A, being the fundamental vector field of the(R,+)-action
on A induced byv0, i.e. the action.A � σm �→ σm + sv0(m), and thus a canonical Ja-
cobi structure determined byXA. The corresponding Jacobi bracket of smooth functions
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onA reads

{f, g}A = fXA(g)− gXA(f).

If V is a vector subbundle in the model vector bundleV(A) of an affine bundleA overM,
then the canonical projectionρ : A → A/V of A onto the quotient affine bundleA/V
defines an affine bundle structure on the total spaceA overA/V modeled on(A/V)×M V

(see[2]). We will call this affine bundle anaffine projection bundle(AP-bundle) and denote
it AP(A, V). Sinceρ is a morphism of affine bundles overM, it makes sense to speak about
theaffine section bundleAS(A, V) of ρ. The affine section bundle with fibers

AS(A, V)m = {zm ∈ Aff(Am/Vm;Am) : zm ◦ ρm = idAm/Vm}
is an affine bundle overM modeled onAffM(A/V ;V). The space of sections of the
affine bundleAS(A, V), i.e. the space of affine sections ofAP(A, V), we will denote by
Aff Sec(A, V).

If, by chance,A is a vector bundle, then we can also speak about thelinear section bundle
LS(A, V) overM with fibers

LS(A, V)m = {um ∈ Hom(Am/Vm;Am) : um ◦ ρm = idAm/Vm}.
This is an affine bundle overM modeled onHomM(A/V ;V). The space of sections of the
affine bundleLS(A, V), i.e. the space of linear sections ofAP(A, V), will be denoted by
Lin Sec(A, V).

Using the canonical extensions of affine maps from an affine space to linear maps from
its vector hull we get the following variant ofTheorem 2.

Theorem 10. The canonical embeddingAffM(A/V ;A) ⊂ HomM(Â/V ; Â) induces a
canonical identification

AS(A, V) � LS(Â, V).

On the level of sections we denote this identification

Aff Sec(A, V) � σ �→ σ̂ ∈ Lin Sec(Â, V).

7. Bundles of affine values

A particularly interesting case is that for one-dimensional special affine bundlesZ =
(Z, v0) overM which we will callbundles of affine values(AV-bundles) and usually denote
by Z. The fibers of such bundles are spaces of affine scalars described inSection 5. The
sections of an AV-bundle will play the role of functions in our affine differential geometry
that will be developed in next sections. The model vector bundleV(Z) for ξ : Z → M is
one-dimensional and equipped with a distinguished non-vanishing section. It is clear that
this yields a canonical identification ofV(Z)with the trivial bundleM×R with distinguished
non-vanishing section represented by the constant function 1M , i.e. withM × I. Thus the
AV-bundleZ itself istrivializable, since every sectionσ ∈ Sec(Z) defines the isomorphism
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Iσ : Z → V(Z) = M × I, butnot trivial, because we have no canonical trivialization. We
insist on not introducing any particular trivialization, since introducing it is like fixing a
frame or observer in a physical system and our approach is thought of as a geometric
framework for studying such systems in a frame-independent way.

The sections ofZ can be viewed as ‘functions with affine values’, since they take values
in fibers ofZ which are almost reals except for the fact that we do not know where is 0, so
we can only measure the relative positions of points. The main difference and difficulty is
now thatSec(Z) is not an algebra nor even a vector space but only an affine space modeled
on the algebraC∞(M) of smooth functions. In what follows, we will identify the model
bundle for an AV-bundleZ with M × I. Thus we can add reals,zm �→ zm + s, in every
fiberZm of Z, so we have a free and transitive on fibers action of the group(R,+) on Z,
i.e. Z is anR-principal bundle. Let us recall that the vertical vector field onZ which is
the fundamental vector field of this action we denote byXZ and the corresponding vertical
Jacobi bracket onZ by {·, ·}Z. The adjoint special affine bundlēZ is represented byZ with
the opposite action ofR, i.e. with the fundamental vector field−XZ. Conversely, it is easy
to see that everyR-principal bundleZ carries an AV-bundle structure. We have an obvious
bundle version ofTheorem 8.

Theorem 11. There is a canonical isomorphism

F : Z → Z̄#, Fam(a
′
m) = am − a′m, (19)

represented by the the special affine pairing

Z× Z̄ � (am, a
′
m) �→ am − a′m ∈ I.

This isomorphism extends by linearity to an isomorphismF : Ẑ → Z† of special vector
bundles.

F : Ẑ → Z† defines also a map on the level of sections,u ∈ Sec(Ẑ) �→ Fu ∈ Aff(Z).
SinceM × I ↪→ Ẑ as V(Z), we can understand 1M as a section of̂Z and we obtain
F1M = 1Z, so the mapF identifies functions onM with their pull-backs toZ. Moreover, for
anyσ ∈ Sec(Z), the functionFσ is an affine function onZ which is uniquely characterized
by the property thatFσ vanishes on the image ofσ ∈ Sec(Z) andXZ(Fσ) = 1. This
allows us to understand sections ofZ as smooth functionsϕ on Z with XZ(ϕ) = 1. The
space of sections of̄Z is identified with the space of smooth functions onZ satisfying
XZ(ϕ) = −1.

An important observation is that every special affine bundleA = (A, v0) gives rise to an
AV-bundle. Indeed, the vector bundleAffM(A/〈v0〉; 〈v0〉) is special. As the distinguished
sectionṽ0, which is constant on fibers ofA/〈v0〉 we chosẽv0(ρ(am)) = −v0(m). Hence,
AP(A, 〈v0〉) is canonically an AV-bundle which we denote byAV(A). The distinguished
section is chosen in such a way thatXAV(A) is the vertical liftv0

A of v0, soAV(Z) = Z̄
andAV(Z#) = Z for any AV-bundleZ. Moreover the mapF for AV(A) is characterized
by the property that the affine functionFσ associated with a sectionσ of AV(A) satisfies
v0

A(Fσ) = 1 andFσ ◦ σ = 0. Note the isomorphismAV(A) = AV(Ā). The choice of the
distinguished section inAV(A) is justified by the next two theorems.
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In the linear case there is an obvious identification of sectionsX of a vector bundleE
with linear functionsιE∗(X) on the dual bundleE∗, defined by the canonical pairing. IfE′
is a submanifold ofE∗ (in applicationsE′ will be usually a vector or an affine subbundle),
the restriction ofιE∗(X) to E′ will be denoted byιE′(X). In this notation, a sectiona of a
special affine bundleA (regarded as a section ofÂ) will give rise to a linear functionιA†(a)

on A† and an affine functionιA#(a) on the affine subbundleA# of A†. Denote the mapF
for the AV-bundleAV(A†) (resp.,AV(A#)) by F† (resp.,F#).

For a special affine bundle (resp., a special vector bundle)A = (A, v0)denoteAS(A, 〈v0〉)
by AS(A) (resp.,LS(A, 〈v0〉) by LS(A)). The spaces of sections of these bundles we de-
note simplyAff Sec(A) andLin Sec(A), respectively. Since the sectionṽ0 is affine, also
AS(A) is canonically a special affine bundle. In the case whenA is a special vector bun-
dle the affine bundleLS(A) is not canonically special, since the sectionṽ0 is not linear.
However, in the case whenA is a bispecial vector bundle with the distinguished section
ϕ0 of A∗, 〈ϕ0, v0〉 = 0, then alsoLS(A) is special affine with the distinguished section
ṽϕ0 ∈ Hom(A/〈v0〉; 〈v0〉),

ṽϕ0(ρ(am)) = −〈ϕ0(m), am〉v0(m).

Theorem 12 (Grabowska et al.[2]). There is a canonical isomorphism of affine bundles

A � LS(A†), am �→ σ̂am,

where

σ̂am([ϕm]) = ϕm − ϕm(am)1A(m).

In other words, for any sectiona ofA,

F†
σ̂a
= ιA†(a).

The corresponding isomorphism of the model vector bundles takes the form

V(A)m � Xm ↔ −ι†Xm
∈ (A†/〈1A〉)∗,

whereι†Xm
([ϕm]) = (ϕm)v(Xm).

Note that the above theorem is an affine version of the well-known fact that sections of
a vector bundleE overM can be identified with linear (along fibers) functions on the dual
E∗, i.e. with linear sections of the bundleE∗ ×R overE∗. We can extend this identification
to special affine bundles as follows.

Theorem 13. For a special affine bundleA = (A, v0) there is a canonical identification
of special affine bundles

A � AS(A#) � LS(A†), am ↔ σam ↔ σ̂am. (20)

On the level of sections it takes the form

Sec(A) � Aff Sec(A#) � Lin Sec(A†), a↔ σa ↔ σ̂a, (21)
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where

F†
σ̂a
= ιA†(a),

F#
σa
= ιA#(a).

This identification leads to the obvious identification of the corresponding model vector
bundles

V(A) = AffM(A#/〈1A〉;R) = HomM(A†/〈1A〉;R)(= (A†/〈1A〉)∗)
taking on sections the form

X↔ −ι#X ↔ −ι†X,
where linear functionsι†X and affine functionsι#X on A†/〈1A〉 andA#/〈1A〉 are the projec-
tions of linear functionsιA†(X) on A† and affine functionsιA#(X) on A#, respectively.

Proof. The proof that these bundles are canonically isomorphic is just the combination of
Theorems 12 and 10. That the distinguished sections are preserved follows from

F†
σ̂
a+v0

= ιA†(a+ v0) = F†
σ̂a
+ ιA†(v

0), F#
σ
a+v0

= ιA#(a+ v0) = F#
σa
+ 1. �

Corollary 1. For an affine bundleA and an AV-bundleZ overM there is a canonical
identification

AffM(A;Z) � A† �M Z.

Proof. Observe first thatA×a
MZ is canonically a special affine bundle and the identification

mapping↔ graphinduces the identification ofAffM(A;Z)with the spaceAS(A×a
MZ̄) of

affine sections of the associated AP-bundleA×a
MZ̄ overA. The latter is, due to the above

theorem, canonically identified with the special affine bundle(A×a
MZ̄)# overM. In view

of Theorems 5 and 11(
A

a×MZ̄
)#
� A† �M Z̄# � A† �M Z. �

We will end up this section with presenting the above concepts in local coordinates. First
of all, for a special vector bundlev(η) : V = (V, v0)→ M we choose a coordinate neigh-
borhoodU in M with coordinatesx = (xb) and a basis(v1, . . . , vk, v0) of local sections
overU which contains the distinguishedv0. On fibers overU we have then the associated
linear coordinates(y, s) = (y1, . . . , yk, s), so the coordinates(x, y, s) on (v(η))−1(U).
We will call such local coordinates onV linear coordinates. These coordinates can serve
as coordinates onη−1(U) for any special affine bundleη : A = (A, v0) → M modeled
on v(η) if we use the isomorphism of affine bundlesIσ : A → V = V(A) determined
by a sectionσ ∈ Sec(A). Such coordinates will be calledlocal affine coordinates onA.
The change of the sectionσ results in the transformation of coordinates by a translation
(x, y, s) �→ (x, y + f(x), s + g(x)), so that objects of affine differential geometry should
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be defined in local coordinates invariantly with respect to this change of coordinates. OnÂ
we have linear coordinates(x, y, z, s) such thatA is characterized by the equationz = 1.
The canonical vector field onA has the expressionXA = −∂s. Affine functions onA have
the form

ϕ(x, y, s) = αi(x)yi + γ(x)s+ β(x)

and correspond to linear functions

ϕ̂(x, y, z, s) = αi(x)yi + γ(x)s+ β(x)z

onÂ. Hence,(xb, α1, . . . , αk, β, γ) represent coordinates onA†. The distinguished section
is 1A(x) = (x,0,1,0). The affine subspaceA# in A† is characterized byγ = 1.

If A = Z is an AV-bundle then the coordinatesy are lacking and the affine function
corresponding to the sectionσ : s = σ(x) is Fσ(x, s) = σ(x) − s. For the particular case
of the AV-bundlesAV(A#) and AV(A†) induced by a special affine bundleA we have
coordinate expressions(x, α, β) �→ (x, α) and(x, α, β, γ) �→ (x, α, γ), respectively. The
distinguished sections are described by the equationβ = −1. The canonical pairing between
Â andA† is

〈(x, y, z, s), (x, α, β, γ)〉 = yiα
i + zβ + sγ,

so that the canonical pairing betweenA andA# reads

〈(x, y, s), (x, α, β)〉sa= 〈(x, y,1, s), (x, α, β,1)〉 = yiα
i + β + s.

In other words,ιA#(a)(x, α, β) = yi(x)α
i + β+ s(x) for a sectiona(x) = (x, y(x), s(x)) of

A.
Affine (resp., linear) sections of the bundlesAV(A#) andAV(A†) have the form

σ(x, α) = (x, α, yi(x)α
i + s(x)) and σ̂(x, α, γ) = (x, α, γ, yi(x)α

i(x)+ s(x)γ),

respectively. The associated affine functionF#
σ = iA#(ā) on A# reads

Fσ(x, α, β) = β − yi(x)α
i − s(x) = 〈(x, α, β), (x,−y(x),−s(x))〉sa

and corresponds to the sectionā(x) = (x,−y(x),−s(x)) of A. Conversely, the sectiona(x)
corresponds, by definition, to the affine section

σa(x, α) = (x, α, β − 〈(x, y(x), s(x)), (x, α, β)〉sa) = (x, α,−yi(x)αi − s(x))

of A#.

8. AV-differential geometry: the phase and the contact bundles

The standard Cartan calculus of differential forms is based on the algebra of differentiable
functions on a manifoldM. We will start to buildAV-differential geometrywhere for the
Cartan calculus we replace functions by sections of an AV-bundleζ : Z → M modeled on
the trivial bundleprM : M × I. This is our starting object whose sectionsSec(Z) replace
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the sections ofM × R, i.e. smooth functionsC∞(M) on M in the standard differential
geometry. This chapter is based on[22,25], where AV-analogs of the cotangent and contact
bundlesT∗M andT∗M × R have been introduced.

One builds an AV-analog of the cotangent bundleT∗M as follows. Let us define an
equivalence relation in the set of all pairs(m, σ), wherem is a point inM andσ is a section
of ζ. Two pairs(m, σ) and(m′, σ′) are equivalent ifm′ = m and d(σ′ − σ)(m) = 0. We
have identified the sectionσ′ −σ of prM with a function onM for the purpose of evaluating
the differential d(σ′ − σ)(m). We denote byPZ the set of equivalence classes. The class
of (m, σ) will be denoted bydσ(m) or by dmσ and will be called thedifferential of σ at
m. We will write d for the affine exterior differential to distinguish it from the standard d.
We define a mappingPζ : PZ → M by Pζ(dσ(m)) = m. The bundlePζ is canonically an
affine bundle modeled onπM : T∗M → M with the affine structure

dσ2(m)− dσ1(m) = d(σ2− σ1)(m).

This affine bundle is called thephase bundleof ζ. A section ofPζ will be called anaffine
one-form.

Let α : M → PZ be an affine one-form and letσ be a section ofζ. The differential
dm(α−dσ) does not depend on the choice ofσ and will be called thedifferential ofα atm.
We will denote it bydα(m) or bydmα. The differential of an affine one-formα ∈ Sec(PZ)
is an ordinary 2-formdα ∈ Ω2(M). The correspondingaffine de Rham complexlooks now
like

Sec(Z)
d−→Sec(PZ)

d−→Ω2(M)
d−→Ω3(M)

d−→· · · (22)

and consists of affine maps. This is anaffine complexin this sense that its linear part is a
complex of linear maps, so that we can define the corresponding cohomology. The linear
part of(22) is a part of the standard de Rham complex (without its beginning consisting of
the inclusion ofR intoC∞(M)). However, note that the cohomology of(22)can be defined
without refereing to its linear part. Indeed, the problem is only with the first and the second
cohomology space, since the rest is the standard de Rham complex. Denote the kernel (the
inverse image of{0}) and the image of the affine mapd : Sec(PZ)→ Ω2(M) by Z1 and
B2, respectively.Z1 is an affine subspace ofSec(PZ) andB2 is a vector subspace of the
kernelZ2 of d : Ω2(M)→ Ω3(M). Moreover, the imageB1 of d : Sec(Z)→ Sec(PZ)
is an affine subspace inZ1. But the quotients of affine spaces are vector spaces, so that
H1 = Z1/B1 andH2 = Z2/B2 are vector spaces. It is easy to see that we got nothing but
the lacking first and second de Rham cohomology.

Recall that the bundleZ can be considered as a principal bundle with the structure
group(R,+) and the fundamental vector field of this action we have denoted byXZ. Let us
observe now thatPZ represents the principal connection bundle ofZ, i.e. there is a canonical
identification of the affine spaceSec(PZ)of sections ofPZ with the affine spacePConn(Z)
of principal connections inZ. We will identify the space of principal connections with the
space of connection one-forms. In other words,PConn(Z) consists of those one-formsν
on Z which areXZ-invariant andν(XZ) = 1. Since we can add toν the pull-backs of
one-forms onM, both affine spaces are modeled on the spaceΩ1(M) of one-forms onM.
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Theorem 14. There is a canonical isomorphism of affine spacesF : Sec(PZ) →
PConn(Z), with linear part being the identity onΩ1(M), such that for any sectionσ
of Z

Fdσ = dFσ,

whereFσ(σ
′) = σ − σ′. Moreover,

dFα = ζ∗(dα),

so that the2-form dα ∈ Ω2(M) is the curvature form of the connectionα ∈ Sec(PZ).

Proof. Indeed, sinceXZ(Fσ) = 1, dFσ ∈ PConn(Z). Moreover, forf ∈ C∞(M),

Fd(σ+f) = d(Fσ + f ◦ ζ),
so that

Fdσ+df = Fdσ + ζ∗df

and we can defineFα for arbitraryα ∈ Sec(PZ) by Fα = Fdσ + ζ∗(α− dσ). Finally,

dFα = d(Fdσ + ζ∗(α− dσ)) = ζ∗d(α− dσ) = ζ∗dα.

Conversely, ifν ∈ PConn(Z), thenν − dσ is a vertical andXZ-invariant one-form onZ
for any sectionσ of Z, thusν − dσ = ζ∗(µ) for certain one-formµ onM. Then,ν = Fα

for α = dσ + µ. �

In local affine coordinates(xa, s) on Z we have

Fαa(x)dxa = αa(x)dx
a − ds.

As we have noticed, there is a distinguished affine spaceZ1 of closedaffine one-forms. It
turns out that, like in the case of the cotangent bundle, they can be defined intrinsically as
those sections ofPZ whose images are Lagrangian submanifolds with respect to acanonical
symplectic structureonPZ which is defined as follows.

For a chosen sectionσ of ζ we have isomorphisms

Iσ : Z → M × R, Idσ : PZ → T∗M (23)

and for two sectionsσ, σ′ the mappingsIdσ andIdσ′ differ by translation by d(σ − σ′), i.e.

Idσ′ ◦ I−1
dσ : T∗M → T∗M : αm �→ αm + d(σ − σ′)(m). (24)

Now we use an affine property of the canonical symplectic formωM on the cotangent
bundle:translations inT∗M by a closed1-form are symplectomorphisms, to conclude that
the two-formI∗dσωM , whereωM is the canonical symplectic form onT∗M, does not depend
on the choice ofσ and therefore it is a canonical symplectic form onPZ. We will denote
this form byωZ.

Theorem 15. An affine1-formα ∈ Sec(PZ) is closed if and only ifα(M) is a Lagrangian
submanifold of(PZ, ωZ).
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Proof. Consider a sectionσ ∈ Sec(Z) and the corresponding isomorphism of affine bun-
dlesIdσ : PZ → T∗M. With respect to this isomorphism any affine one-formα corre-
sponds to the true one-formα− dσ onM : Idσ(α(m)) = α(m)− dσ(m). According to the
well-known characterization,α− dσ is closed if and only if(α− dσ)(M) is a Lagrangian
submanifod in(T∗M,ωM) so if and only if

α(M) = I−1
dσ ((α− dσ)(M))

is a Lagrangian submanifold of(PZ, ωZ), sinceIdσ is a symplectomorphism. But, by
definition, d(α− dσ) = 0 if and only if dα = 0. �

Remark. It is obvious thatPZ andPZ̄ are equal as manifolds. Letσ be a section ofZ. The
same mapping interpreted as a section ofZ̄ will be denoted bȳσ. Sinceσ − σ′ = σ̄′ − σ̄,
the isomorphismsIdσ : PZ → T∗M andIdσ̄ : PZ̄ → T∗M are related byIdσ = −Idσ̄ . It
follows that

ωZ̄ = I∗dσ̄ωM = −I∗dσωM = −ωZ.

There is no canonical Liouville one-form onPZ (in the standard sense) which is the
potential of the canonical symplectic formωZ but there is such a form in the affine sense.
To define this Liouville one-form let us build another canonical affine bundle out ofZ.

We define another equivalence relation in the set of all pairs(m, σ). Two pairs(m, σ) and
(m′, σ′) are equivalent ifm′ = m, σ(m) = σ′(m), and d(σ′ − σ)(m) = 0. We can identify
the equivalence class of(m, σ)with the first jet of the sectionσ with the source pointm. We
denote byCZ the set of equivalence classes. The class of(m, σ)will be denoted by cσ(m) or
by cmσ and will be called thecontact elementof σ atm. We define a fiber bundle structure
overM defining the projectionCζ : CZ → M by Cζ(cσ(m)) = m. In other words,CZ is
the first-jet bundlej1(ζ) of ζ. This fiber bundle is canonically an affine bundle modeled on
γM : T∗M ⊕ R → M with the affine structure defined by

cσ2(m)− cσ1(m) = (d(σ2− σ1)(m), σ2(m)− σ1(m)).

This affine bundle is called thecontact bundleof ζ. The pair(CZ, (0,1M)) is a special affine
bundle. It is easy to seeCZ = PZ×a

MZ and thatCZ/〈(0,1M)〉 is canonically isomorphic
to PZ (we just identify the pointsm in the equivalence relation) so we have the associated
AV-bundle with the canonical projectionζCZ : CZ → PZ.

There is also a canonical projection

µ : CZ → Z, µ(cσ(m)) = σ(m), (25)

which is a morphism of special affine bundlesζCZ : CZ → PZ andζ : Z → M over the
projectionζ : PZ → M on the level of base manifolds and there is a well-defined pull-back
of sections ofζ to sections ofζCZ. Now we can define a sectionθZ of PζCZ : PCZ → PZ
by

θZ(p) = dmµ∗σ, (26)

Pζ(p) = m, whereσ is a section ofζ which representsp ∈ PmZ. In other words, for any
sectionσ ∈ Sec(Z)
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θZ(dσ(m)) = d(µ∗σ)(dσ(m)).

The affine one-formθZ is called theLiouville affine formof CZ and defines thecanonical
contact structureof CZ. This affine one-form overPZ is a potential for the canonical
symplectic form onPZ.

Theorem 16. dθZ = ωZ.

Proof. Let us take a sectionσ0 of Z. Using the identificationIcσ0 : CZ → T∗M × R we
identify the AV-bundleζCZ : CZ → PZ with the trivial bundleprT∗M : T∗M × R →
T∗M. With this identification sections ofζCZ are functions onT∗M andµ∗σ0 = 0 is a
distinguished section ofζCZ, so that sections ofPCZ are standard one-forms onT∗M with
the standard de Rham differential. Moreover, sections ofZ are represented by functions on
M, µ∗ is represented byπ∗M , and the symplectic formωZ is represented by the standard
symplectic formωM onT∗M.

Take a sectionσ of Z understood as a function onM. By definition, θZ(dσ(m)) =
d(π∗Mσ)(dσ(m)) which means thatθZ is represented by the true Liouville one-formθM on
T∗M. Hence,dθZ = ωZ. �

Remark. Note that the above proof does not imply that we can define a true canonical
Liouville one-form onPZ. Indeed, it is easy to see that the change of the initial sectionσ0
into σ′0 with σ′0 = σ0 + f results, for the trivialization given byσ0, in translation of the
LiouvilleLiouville one-form: θM �→ θM − π∗Mdf . Thus, the true Liouville one-form on
T∗M has no affine meaning (but its exterior derivative has such a meaning), since it is not
invariant by translations by dπ∗M(f)). We put a geometrical meaning to the transformation
rules of the Liouville one-form defining its affine version. This explains perhaps better what
an affine one-form is.

The affine Liouville one-formθZ can be interpreted as a canonical principal connection
on the principal bundleζCZ : CZ → PZ, thus as a canonical one-formηCZ = FθZ onCZ.
In any trivializationIcσ : CZ → T∗M×R and the standard Darboux coordinates(xa, pb, s)

on T∗M × R the affine Liouville one-form has the standard expressionθZ = pa dxa, so
ηCZ looks like the canonical contact form:ηCZ = pa dxa − ds. It can be also seen directly
that the canonical contact formηM = pa dxa − ds on T∗M × R is affine in this sense that
it is invariant with respect to translations ofT∗M × R by first jets of functions . We will
call ηCZ thecanonical contact formonCZ. Like every contact form, it induces a (contact)
Jacobi bracket{·, ·}CZ onCZ which in the above local coordinates reads

{f, g}CZ =
∂f

∂pa

∂g

∂xa
− ∂g

∂pa

∂f

∂xa
+

(
pa

∂f

∂pa
− f

)
∂g

∂s
−

(
pa

∂g

∂pa
− g

)
∂f

∂s
. (27)

The corresponding Jacobi structure onCZ in this trivialization takes the form(ΛM+∆T∗M∧
∂s,−∂s), whereΛM = ∂pa∧∂xa is the canonical Poisson tensor onT∗M associated with the
syplectic formωM and∆T∗M = pa∂pa is the Liouville vector field onT∗M (both regarded
as tensor fields onT∗M × R). Again, this Jacobi structure has an affine flavor, since the
tensors are invariant with respect to translations inT∗M × R by first jets of functions.
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9. Lie algebroids associated with AV-bundles

The principal bundle structure ofZ represented by the vector fieldXZ induces additional
structures on functions, vector fields and, in general, differential operators onZ. For any
manifoldN denote byX(N) (resp.,D1(N)) the space of all vector fields (resp., the space
of all linear first-order differential operators) onN, i.e. acting onC∞(N). Clearly,X(N) =
Sec(TN)andD1(N) is the space of sections of the bundleLN = TN⊕R of linear first-order
differential operators onN with the obvious action of(X+h) ∈ Sec(LN) = X(N)⊕C∞(N)
on functions onN given by(X+ h)(f) = X(f)+ hf.

Let us fix an AV-bundleZ overM. The space Poln(Z) of polynomials of order≤ n onZ
is defined as the space of those smooth functionsf onZ for whichXn+1

Z (f) = 0, so that we
have the filtration Pol(Z) = ∪nPoln(Z) of the algebra of all polynomials. Note that in the
affine case we have only the filtration and no canonical graduation of Pol(Z). In particular,
the space Pol0(Z) is just the algebra Bas(Z) of basic functions onZ, i.e. functions that are
constant along fibers (it will be often identified with the algebra of smooth functions onM)
and Pol1(Z) is the spaceAff(Z) of affine (along fibers) functions onZ.

We have also natural subalgebras of the Lie algebraX(Z) of all vector fields onZ. The
Lie algebraX̃(Z) of invariant vector fields onZ consists of those vector fieldsX for which
[XZ, X] = 0. It is easy to see that, in local affine coordinates(xa, s) on Z, invariant vector
fields have the form

X = fa(x)∂xa − g(x)∂s,

where the functionsfa, g are basic. Vector fields from̃X(Z) can be viewed as sections of
the vector bundlẽTZ = TZ/R which is the vector bundle overM of orbits of the tangent lift
φ∗ of the(R,+) actionφ on Z. Since the vector fieldXZ is invariant, it can be understood
as a distinguished section ofT̃Z, soT̃Z is canonically a special vector bundle. This is just
the Atiyah vector bundle (and canonically a Lie algebroid) associated with theR-principal
bundleZ.

There is another natural subalgebra of the Lie algebraX(Z) of all smooth vector fields
on Z, namely the subalgebraXah(Z) of affine-homogeneous vector fields, i.e. those vector
fieldsX which preserve the filtration:X(Poln(Z)) ⊂ Poln(Z). Of course,X̃(Z) ⊂ Xah(Z),
since invariant vector fields lower the filtration:X(Poln(Z)) ⊂ Poln−1(Z). Again, the
spaceXah(Z) is the space of sections of certain vector bundleL̆Z over M which can
be identified with the bundlẽTZ⊕sv

MZ† = (T̃Z ⊕M Z†)/〈XZ − 1Z〉, i.e. the special
direct sum of the special vector bundlesT̃Z andZ†. Indeed, it is easy to see that the class
Y⊕svϕ ∈ Sec(T̃Z⊕sv

MZ†), whereY = fa(x)∂xa − g(x)∂s andϕ(x, s) = α(x)s+β0(x), is
represented byfa(x)∂xa − (α(x)s+ β(x))∂s with β(x) = β0(x)+ g(x), so the vector field
D̊X⊕svϕ = X+ ϕXZ gives such an identification.

Similarly, there is a natural subalgebra of the Lie algebraD1(Z) = D1(Z), the subal-
gebraD1

ah(Z) of affine-homogeneous first-order differential operators, consisting of those
D ∈ D1(Z) which preserve the filtration:D(Poln(Z)) ⊂ Poln(Z). Note thatD1

ah(Z) is
canonically aBas(Z) � C∞(M)-module.

It is easy to see the following proposition.
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Proposition 2. There is a canonical splittingD1
ah(Z) = Xah(Z) ⊕ Bas(Z). Moreover, a

vector fieldX on Z is affine-homogeneous if and only if[XZ, [XZ, X]] = 0 and [XZ, X]
is vertical. In local affine coordinates(xa, s) on Z, affine-homogeneous vector fields have
precisely the form

X = fa(x)∂xa − (α(x)s+ β(x))∂s,

and affine-homogeneous first-order differential operators the form

D = fa(x)∂xa − (α(x)s+ β(x))∂s + γ(x).

Note that the vector fields fromXah(Z) are projectable and the vector fieldX = fa(x)∂xa −
(α(x)s + β(x))∂s projects onto the vector field̊X = fa(x)∂xa on M. Before finding an
appropriate bundle whose sections formD1

ah(Z) let us observe that the canonical Jacobi
bracket{·, ·}Z applied to affine functionsϕ,ψ ∈ Aff(Z) gives a basic function. Indeed, since
X2

Z(ϕ) = X2
Z(ψ) = 0, we have

XZ({ϕ,ψ}Z) = XZ(ϕXZ(ψ)− ψXZ(ϕ)) = 0.

Recall that the mapF identifies sections of̂Z with Aff(Z). In particular, we can identify
sectionsσ of Z with affine functionsFσ which satisfyXZ(Fσ) = 1, so thatSec(Z) � {ϕ ∈
Aff(Z) : XZ(ϕ) = 1Z}. We have the following bundle version ofTheorem 9obtained just
fiberwise.

Theorem 17. For all φ ∈ Aff(Z) = Sec(Z†) and allu ∈ Sec(Ẑ) = Sec((Z†)∗):

{φ,Fu}Z = 〈φ, u〉. (28)

There is a ‘Hamiltonian map’

Aff(Z) � ϕ �→ Dϕ = ϕXZ −XZ(ϕ) = {ϕ, ·}Z ∈ D1(Z)

with the property

Dϕ(Fu) = {ϕ,Fu}Z = 〈ϕ, u〉
for ϕ ∈ Aff(Z), u ∈ Sec(Ẑ). Therefore we can considerZ† as embedded inD1

ah(Z). For a
sectionσ of Ẑ we will write shortlyDσ instead ofDFσ .

In local affine coordinates, the Jacobi bracket of affine functions onZ takes the form

{α(x)s+ β(x), α′(x)s+ β′(x)}Z = α(x)β′(x)− α′(x)β(x)

and the differential operator associated toα(x)s+ β(x) ∈ Aff(Z) reads

Dα(x)s+β(x) = α(x)− (α(x)s+ β(x))∂s. (29)

Now, we can extend the mapD to sections of the bundleRZ = L̆Z⊕sv
MZ† = T̃Z

⊕sv
MZ†⊕sv

MZ† by

DX⊕svϕ⊕svψ = X+ ϕXZ + Dψ.
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It is easy to see that this gives the identification of sections ofRZ with D1
ah(Z). In local

affine coordinates,

DR = fa(x)∂xa − ((α(x)+ α′(x))s+ g(x)+ β(x)+ β′(x))∂s + α(x),

whereR = (fa(x)∂xa−g(x)∂s)⊕sv(α′(x)s+β′(x))⊕sv(α(x)s+β(x)). It is obvious that the
commutator bracket of first-order differential operators induces a Lie algebroid structure
onRZ with the anchor(X⊕svϕ⊕svψ)0 = X̊. In local affine coordinates:

[fa(x)∂xa − (α(x)s+ β(x))∂s + γ(x), f ′a(x)∂xa − (α′(x)s+ β′(x))∂s + γ ′(x)]

=
(
fb(x)

∂f ′a
∂xb

(x)− f ′b(x)
∂fa

∂xb
(x)

)
∂xa −

((
fa(x)

∂α′

∂xa
(x)− f ′a(x)

∂α

∂xa
(x)

))
s

+fa(x) ∂β
′

∂xa
(x)− f ′a(x)

∂β

∂xa
(x)+ α(x)β′(x)− α′(x)β(x))∂s

+
(
fa(x)

∂γ ′

∂xa
(x)− f ′a(x)

∂γ

∂xa
(x)

)

and

(fa(x)∂xa − (α(x)s+ β(x))∂s + γ(x))0 = fa(x)∂xa .

Writing X = fa(x)∂xa and representingfa(x)∂xa − (α(x)s+β(x))∂s+ γ(x) by (X, α, β, γ)
we can write shortly

[(X, α, β, γ), (X′, α′, β′, γ ′)]
= ([X,X′], X(α′)−X′(α),X(β′)−X′(β)+ αβ′ − α′β,X(γ ′)−X′(γ)). (30)

Note that the distinguished sectionsXRZ = −∂s andIRZ = 1 are in this Lie algebroidideal
sections, i.e. these sections are nowhere-vanishing and the sections of the one-dimensional
subbundles generated byXRZ and IRZ are Lie ideals with respect to the Lie algebroid
bracket. A special vector bundle(E,X0) equipped with a Lie algebroid structure such that
X0 is an ideal section we call anideal-special Lie algebroid. An ideal-special Lie algebroid
for whichX0 is a central section, i.e.X0 commutes with any section with respect to the Lie
algebroid bracket, we call aspecial Lie algebroid. It is easy to see that ideal-sections define
canonically 1-cocycles for the corresponding Lie algebroids.

Proposition 3. If X0 is an ideal section of a Lie algebroid on the vector bundleE of rank
> 1overM, then there is a closed‘1-form’ φX0 ∈ Sec(E∗) such that[Y,X0] = 〈Y, φX0〉X0.

Proof. Since [X0, fY] = f [X0, Y ] + ρ(X0)(f)Y andX0 generates a Lie ideal, the an-
chor ρ(X0) vanishes if only rank(E) > 1. Thus [Y,X0] = Φ(Y)X0 for certain function
Φ(Y) which linearly depends onY ∈ Sec(E) andΦ(fY) = fΦ(Y), soΦ(Y) = 〈Y, φ〉 for
certainφ ∈ Sec(E∗). The ‘one-form’φ is closed with respect to the Lie algebroid de
Rham differential, since, due to the Jacobi identity,Φ([Y1, Y2]) = ρ(Y1)(Φ(Y2)) − ρ(Y2)

(Φ(Y1)). �
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For the Lie algebroidRZ denoteφXRZ by φ0. In local affine coordinates,〈R, φ0〉 = α

for R = fa(x)∂xa − (α(x)s+ β(x))∂s + γ(x), soφ0 is nowhere-vanishing. There is another
canonical nowhere-vanishing closed ‘one-form’φ1 on RZ induced by the decomposition
D1

ah(Z) = Xah(Z) ⊕ Bas(Z), namely〈φ1, R〉 = γ. Note that the formφIRZ is identically
zero.

The bundlesT̃Z and L̆Z are subbundles ofRZ characterized byφ0 = φ1 = 0 and
φ1 = 0, respectively. On the level of realizations we haveT̃Z = T̃Z⊕sv

MI ⊂ L̆Z andL̆Z =
L̆Z⊕sv

MI ⊂ RZ. Of course,̃TZ andL̆Z are Lie subalgebroids ofRZ in every natural sense.
Thus we have the chaiñTZ ⊂ L̆Z ⊂ RZ of Lie algebroids overM, canonically associated
with Z, whose Lie algebras of sections areX̃(Z), Xah(Z), andD1

ah(Z), respectively. The

bundleZ† is the kernel of the anchor map inL̆Z, soZ† is canonically a Lie algebroid with
the trivial anchor. It is easy to see that the Lie algebroid bracket onSec(Z†) = Aff(Z) is
given by

[ϕ,ψ] = {ϕ,ψ}Z. (31)

Remark. The embedding ofD1
ah(Z) intoD1(Z) corresponds also to a Lie algebroid mor-

phism fromRZ into LZ. This morphism, however, is of a different kind than morphism
which are considered usually and which are associated with the standard morphisms of
vector bundles, and it is represented by a relation, not a map. This kind of morphisms
is the Lie algebroid version of the Zakrzewski’s morphisms of groupoids (see[28]). The
Zakrzewski’s morphisms of groupoids lead to satisfactory functors intoC∗-algebras (cf.
[19]).

We can embed̃TZ⊕sv
MZ† into T̃Z⊕sv

MZ†⊕sv
MZ† � RZ putting I not on the third

place but on the second. The resulting subbundle ofRZ we will denoteL̃Z. It can be
described as the one determined by the equationφ1− φ0 = 0 and therefore it is also a Lie
subalgebroid ofRZ like every kernel of a closed nowhere-vanishing one-form. The induced
Lie algebroid structure oñTZ⊕sv

MZ† reads

[X
sv⊕ϕ,X′ sv⊕ϕ′] = [X,X′]

sv⊕(X(ϕ′)−X′(ϕ)+ {ϕ, ϕ′}Z)

and it is the same as the one obtained from the identification ofT̃Z⊕sv
MZ† with L̆Z. In other

words,L̆Z andL̃Z are isomorphic Lie algebroids differently placed inRZ. The sections of
L̃Z are first-order operators onZ having in local affine coordinates the form

D = fa(x)∂xa − (α(x)s+ β(x))∂s + α(x).

The natural isomorphism with̆LZ is just the restriction of the anchor map onLZ = TZ⊕R,
i.e.D �→ D̊, where

D̊ = fa(x)∂xa − (α(x)s+ β(x))∂s.
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10. Affine derivations and affine first-order differential operators

Let us fix an AV-bundleζ : Z → M. In the standard differential geometry the phase
and the contact bundlesT∗M andT∗M ⊕ R are representing objects for derivations and
linear first-order differential operators onC∞(M), i.e. on sections of the trivial vector
bundleM×R. By analogy, in AV-differential geometry by thebundle of affine derivations
on Z (resp., thebundle of affine first-order differential operatorson Z) with values in an
affine bundleA we understand the affine bundleAffM(PZ;A) (resp.,AffM(CZ;A)). Thus
the affine spaceADer(Z;A) of affine derivations(resp., the spaceADO1(Z;A) of affine
first-order differential operators) on Z with values inA is the space of sections of this
bundle. We have an obvious actionσ �→ D(σ) of D ∈ Aff(PZ;A) (resp.D ∈ Aff(CZ;A))
on sectionsσ of Z by D(σ) = D(dσ) (resp.,D(σ) = D(cσ)). In the caseA = M × R

we speak just about affine derivations (resp., affine first-order operators) onZ and denote
the (linear) spaceADer(Z;R) = Sec(AffM(PZ;R)) = Sec(PZ†) (resp.ADO1(Z;R) =
Sec(AffM(CZ;R)) = Sec(CZ†)) simply by ADer(Z) (resp.,ADO1(Z)). It is obvious
by definition that the linear parts of affine derivations (resp. differential operators) are true
derivations (resp. differential operators) onC∞(M). It is also clear that these concepts can
be extended naturally to a concept of a differential operator of arbitrary order. In this sense,
the affine spaceADO0(Z;A) of affine differential operators of order 0onZ with values in
A is the space of sections ofAffM(Z, A), so the differential operators of order 0 with values
in R are sections ofZ†.

To understand better the structure of the bundles of derivations and first-order differ-
ential operators let interpret them as certain bundles constructed out ofZ in the way in
which derivations ofC∞(M) are interpreted as vector fields, i.e. sections ofTM. Given an
AV-bundleZ let us consider the cotangent bundleT∗Z. The(R,+)-actionφ on Z can be
lifted to an(R,+)-actionφ∗ onT∗Z, (φ∗)r = (φ−r)∗. The fundamental vector field of this
action we denote byXT∗Z. The orbits [αzm ] of this action form a vector bundle overM
which we denote bỹT∗Z. The sections of̃T∗Z are represented by one-forms onZ, invariant
with respect toXT∗Z. Moreover, there is a canonical decompositionT∗Z = T̃∗Z ×M Z
given by

αzm �→ ([αzm ], zm) (32)

which shows thatT∗Z is canonically an affine bundle overM with respect to the projection
ζ◦πZ. This is a special affine bundle modeled onT̃∗Z×I. In local coordinates(xa, s)onZ and
the adapted coordinates(xa, s, pa, p) on T∗Z, the lifted action reads(φ∗)r(xa, s, pa, p) =
(xa, s + r, pa, p) andXT∗Z = −∂s. Hence,(xa, pa, p) represent coordinates oñT∗Z and
the sectionpa = pa(x), p = p(x), represents the invariant one-formpa(x)dxa + p(x)ds
on Z. The affine phase bundlePZ can be identified with the affine subbundle ofT̃∗Z in
obvious way:

PZ = {[αzm ] ∈ T̃∗Z : 〈αzm,XZ(zm)〉zm = 1}.

Hence,P̂Z � T̃∗Z. The contact bundleCZ is an affine subbundle ofT∗Z = T̃∗Z×a
MZ

being the affine productPZ×a
MZ.

We can do a similar procedure with the tangent bundle and obtain



428 K. Grabowska et al. / Journal of Geometry and Physics 52 (2004) 398–446

TZ = T̃Z×M Z.

The vector fieldXZ is invariant, so it serves as a distinguished section ofT̃Z. ThusT̃Z is
canonically a special vector bundle. SinceT̃Z is dual toT̃∗Z, it is obvious that̃TZ‡ = PZ (or,
equivalently that(PZ)† = T̃Z), since sections ofPZ are considered as invariant one-forms
ν onZ such thatν(XZ) = 1. Hence,ADer(Z) = Sec(T̃Z) = X̃(Z) is the space of invariant
vector fieldsXonZ and their action on sectionsσ of Z is given byX(σ)◦ζ = X(Fσ). In local
affine coordinates(xa, s) onZ for whichXZ = −∂s, we can writeX = fa(x)∂xa +g(x)XZ,
so that

X(σ) ◦ ζ = (fa(x)∂xa − g(x)∂s)(σ(x)− s) = fa(x)
∂σ

∂xa
(x)+ g(x).

We will use the natural convention and denote the pull-backf ◦ζ of a functionf ∈ C∞(M)

to a basic function onZ by Ff . With this convention we can simply writeFX(σ) = X(Fσ).
According toTheorem 4(3), CZ† equals

(PZ)†
sv⊕MZ† = T̃Z

sv⊕MZ†,

soADO1(Z) = Sec(T̃Z⊕sv
MZ†). The sectionD = X⊕svϕ ∈ Sec(T̃Z⊕sv

MZ†) acts on
σ ∈ Sec(Z) byX(σ) = X(σ)+ ϕ ◦ σ. We will identify this bundle withL̃Z, since we can
interpret this action byD(σ) ◦ ζ = (X + Dϕ)(Fσ). In local affine coordinatesD has the
form

D = fa(x)∂xa − (α(x)s+ β(x))∂s + α(x)

and its action on sections ofZ reads

FD(σ) = D(σ) ◦ ζ = D(σ(x)− s) = fa(x)
∂σ

∂xa
(x)+ α(x)σ(x)+ β(x).

In view of Corollary 1(Section 7),

ADer(Z;Z) = Sec(T̃Z �M Z) = (T̃Z
a×MZ)/〈XZ − 1M〉.

SectionX � σ′ ∈ Sec(T̃Z �M Z) acts onσ ∈ Sec(Z) by (X � σ′)(σ) = X(σ) + σ′.
The embeddingF of Z into Z† induces the obvious embedding ofT̃Z �M Z as an affine
hyperbundleT̄Z in T̃Z⊕sv

MZ†. If we identify the last bundle with̆LZ, thenT̄Z can be
interpreted as an affine hyperbundle inL̆Z and its sections can be interpreted as first-order
differential operators onZ of the local form

X̄ = fa(x)∂xa + (s− β(x))∂s.

Their action on sections ofZ is given by

FX̄(σ)(x, s) = X̄(σ(x)− s) = fa(x)
∂σ

∂xa
(x)+ β(x)− s,

so

X̄(σ)(x) = fa(x)
∂σ

∂xa
(x)+ β(x).



K. Grabowska et al. / Journal of Geometry and Physics 52 (2004) 398–446 429

Similarly as above, we get

Aff(CZ;Z) = (CZ)† �M Z = L̃Z �M Z,

so that

ADO1(Z;Z) = Sec(L̃Z �M Z).

An elementD̄ = D � σ′ ∈ Sec(L̃Z �M Z) acts onσ ∈ Sec(Z) by D̄(σ) = D(σ) + σ′.
Again, the embeddingF : Z → Z† induces the obvious embedding ofL̃Z�M Z as an affine
hyperbundle of the vector bundlẽLZ⊕sv

MZ† = RZ. This bundle we will denote shortly
L̄Z, so that, with respect to this identification,ADO1(Z;Z) is the space of sections ofL̄Z,
i.e. the space of first-order differential operators onZ of the local form

D̄ = fa(x)∂xa − ((α(x)− 1)s+ β(x))∂s + α(x).

Then,

FD̄(σ)(x, s) = fa(x)
∂σ

∂xa
(x)+ α(x)σ(x)+ β(x)− s,

so

D̄(σ)(x) = fa(x)
∂σ

∂xa
(x)+ α(x)σ(x)+ β(x).

We can summarize all these observations as follows.

Theorem 18. Let Z be an AV-bundle overM. There are subbundles ofRZ: vector sub-
bundlesT̃Z, L̃Z, L̆Z and affine subbundles: T̄Z modeled oñTZ and L̄Z modeled oñLZ,
characterized byφ0 = φ1 = 0, φ1 − φ0 = 0, φ1 = 0, φ0 = 1 andφ1 = 0, φ1 − φ0 = 1,
respectively, such that

(a) ADer(Z) = Sec(T̃Z) = X̃(Z),
(b) ADer(Z;Z) = Sec(T̄Z),
(c) ADO1(Z) = Sec(L̃Z),
(d) ADO1(Z;Z) = Sec(L̄Z),

and the actionσ �→ D(σ)of sectionsDof these bundles, regarded as elements ofSec(RZ) =
D1

ah(Z), on sectionsσ of Z is given by

FD(σ) = D(Fσ).

Remark. Of course, the vector bundleZ† (whose sections representADO0(Z)) and the
affine bundleZ† �M Z (whose sections representADO0(Z;Z)) are also subundles ofRZ
contained in the kernel of the anchor map.

11. Canonical Lie affgebroids associated with AV-bundles

In the standard differential geometry the canonical Lie algebroid associated with a man-
ifold M, or better, with the trivial bundleM × R, is TM. With an AV-bundleZ we have
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associated the bundlẽTZ. Sections of̃TZ are interpreted as affine derivations on sections
of Z. The bundleT̃Z carries a canonical Lie algebroid structure like every Atiah bundle
of a principal bundle. The Lie bracket is inherited fromD1(Z). The bracket can be also
described in terms of affine derivations:

[X,X′] = Xv ◦X′ − (X′)v ◦X,
whereXv is the vector part of the affine derivationX : Sec(Z)→ C∞(M) (which represents
also the anchor ofX).

Similarly, the bundlẽLZ is also canonically a Lie algebroid with similarly defined bracket

[D,D′] = Dv ◦D′ − (D′)v ◦D,
whereDv : C∞(M)→ C∞(M) is the vector part ofD ∈ ADO1(Z).

Recall that the distinguished sectionsXRZ = −∂s and IRZ = 1 are in the Lie alge-
broid RZ ideal sections, i.e. these sections are nowhere-vanishing and the sections of the
one-dimensional subbundles generated byXRZ andIRZ are Lie ideals with respect to the
Lie algebroid bracket. The closed ‘one-form’ corresponding toXRZ we denote byφ0.

The special affine bundles̄TZ and L̄Z also carry canonical algebraic structures, rep-
resented by the commutators of their sections regarded as affine mapsD : Sec(Z) →
Sec(Z):

[D,D′] = D ◦D′ −D′ ◦D.
These structures can be recognized asLie affgebroidstructures. Recall (cf.[2]) that anaffine
Lie bracketon an affine spaceA is a bi-affine map

[·, ·] : A×A→ V(A)

which is skew-symmetric: [σ1, σ2] = −[σ2, σ1] and satisfies the Jacobi identity:

[σ1, [σ2, σ3]]2
v + [σ2, [σ3, σ1]]2

v + [σ3, [σ1, σ2]]2
v = 0,

where [·, ·]2v is the affine-linear part of the biaffine bracket. An affine space equipped with
an affine Lie bracket we shall call aLie affgebra. Note that the termaffine Lie algebrahas
been already used for certain types of Kac–Moody algebras.

If A is an affine bundle overM modeled onV(A) then aLie affgebroid structureonA
is an affine Lie bracket on sections ofA and a morphismγ : A → TM of affine bundles
(over the identity onM) such that [σ, ·]2v is a quasi-derivation with the anchorγ(σ), i.e.

[σ, fX]2v = f [σ,X]2v + γ(σ)(f)X

for all σ ∈ Sec(A), X ∈ Sec(V(A)), f ∈ C∞(M).

Remark. The above definition is a slight generalization of the one proposed in[12,13]
where the additional assumptions that the base manifoldM is fibered overR and thatγ(σ)
are vector fields projectable onto∂/∂t have been put. On the other hand, one can try to
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define Lie affgebra as a skew-symmetric (in the affine sense) bracket [·, ·]a onSec(A) with
values inSec(A) satisfying the Jacobi identity of the form∑

ω∈S3

sgn(ω)[σω(1), [σω(2), σω(3)]a]a = 0.

The l.h.s. of the above equation is a vector combination of elements ofSec(A), so the
identity makes sense. The problem with such definition is that, as we already know, any
skew-symmetric operation onSec(A) defines automatically an elementσ0 ∈ Sec(A),
σ0 = [σ, σ], and we get such a bracket in the form [σ1, σ2]a = [σ1, σ2] + σ0, where [·, ·] is
the Lie affgebra bracket in the version we started with. Fixingσ0 is usually too much (we
just get a trivialization of the affine space) for applications and canonical examples, so we
remain with the weaker definition.

Example 1. Every AV-bundleZ carries a canonical Lie affgebroid structure induced by
the affine structure. The bracket of sectionsσ, σ′ of Z is just [σ, σ′] = (σ − σ′).

The following fact has been proved in[2], Theorem 11.

Theorem 19. A map[·, ·] : Sec(A)× Sec(A)→ Sec(V(A)) is a Lie affgebroid bracket
on an affine bundleA if and only if there is an extension of this map to a Lie algebroid
bracket[·, ·]∧ on Â such that

[Sec(Â),Sec(Â)]∧ ⊂ Sec(V(A)). (33)

Moreover, (33)is equivalent to the fact that1A ∈ Sec(A†) = Sec(Â∗) is a closed one-form.

The Lie algebroid(Â, [·, ·]∧) is uniquely determined by the Lie affgebroid(A, [·, ·]) and
we will call it theLie algebroid hullof (A, [·, ·]).

Example 2. The Lie affgebroid bracket onZ from the previous example extends to a Lie
algebroid bracket on̂Z. This bracket can be expressed by means of the canonical Jacobi
bracket onZ by F[u,u′] = {Fu,Fu′ }Z.

Since the affine subbundlesT̄Z andL̄Z in the Lie algebroids̆LZ andR̃Z are defined as
the 1-level sets ofφ0 andφ1− φ0, respectively, we get the following theorem (cf.[2]).

Theorem 20. The special affine bundles̄TZ andL̄Z carry canonical Lie affgebroid struc-
tures for which the brackets are the commutators inADer(Z;Z) andADO1(Z;Z), respec-
tively. The Lie affgebroid hulls of̄TZ andL̄Z are L̆Z andR̃Z, respectively.

12. Aff-Poisson and aff-Jacobi brackets

The idea of an affine analog of a Poisson bracket goes back to[24] but we will mainly
follow the picture described in[2].
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Let Z be an AV-bundle overM. An affine Lie bracket onSec(Z)

{·, ·} : Sec(Z)× Sec(Z)→ C∞(M)

is called anaff-Poisson(resp.aff-Jacobi) bracketif

{σ, ·} : Sec(Z)→ C∞(M)

is an affine derivation (resp. an affine first-order differential operator) for everyσ ∈
Sec(Z).

We use the termaff-Poisson, sinceaffine Poisson structurehas already a different meaning
in the literature.

Example 3. Every AV-bundleZ carries a canonical aff-Jacobi bracket determined by the
affine structure:

{σ, σ′} = σ − σ′. (34)

Theorem 21 (Grabowska et al.[2]). For every aff-Poisson(resp. aff-Jacobi) bracket

{·, ·} : Sec(Z)× Sec(Z)→ C∞(M)

its vector part

{·, ·}v : C∞(M)× C∞(M)→ C∞(M)

is a Poisson(resp. Jacobi) bracket. Moreover,

{σ, ·}2v : C∞(M)→ C∞(M)

is a derivation(resp. first-order differential operator) for every sectionσ ∈ Sec(Z),which is
simultaneously a derivation of the bracket{·, ·}v. Conversely, if we have a Poisson(resp. Ja-
cobi) bracket{·, ·}0 onC∞(M) and a derivation(resp. a first-order differential operator)

D : C∞(M)→ C∞(M)

which is simultaneously a derivation of the bracket{·, ·}0, then there is a unique aff-Poisson
(resp. aff-Jacobi) bracket{·, ·} on Sec(Z) such that{·, ·}0 = {·, ·}v andD = {σ, ·}2v for a
chosen sectionσ ∈ Sec(Z).

Using a sectionσ0 to identifySec(Z)withC∞(M), we get that the aff-Poisson(resp. aff-
Jacobi) bracket onSec(Z) has the form

{σ, σ′} = D(σ′ − σ)+ {σ, σ′}v,
whereD is a vector field(resp first-order differential operator) which is a derivation of the
Poisson(resp. Jacobi) bracket{·, ·}v.

Example 4. Every Poisson (resp., Jacobi) bracket{·, ·}M onC∞(M) can be interpreted as
an aff-Poisson (resp., aff-Jacobi) bracket{·, ·} on sections of the trivial AV-affine bundle
M × I. In this case the trivialization is canonical,D = 0 and{·, ·} = {·, ·}M .
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Theorem 22. Let ζ : Z → M be an AV-bundle. Then:

(1) There is a one-to-one correspondence between aff-Poisson brackets{·, ·}aP onSec(Z)
and Poisson brackets{·, ·}Π onC∞(Z)which areXZ-invariant, i.e. which are associated
with Poisson tensorsΠ onZ such that£XZΠ = 0.This correspondence is determined by

{σ, σ′}aP ◦ ζ = {Fσ,Fσ′ }Π. (35)

(2) There is a one-to-one correspondence between aff-Jacobi brackets{·, ·}aJ on Sec(Z)
and Jacobi brackets{·, ·}J onC∞(Z) which are associated with Jacobi structuresJ =
(Π, Γ) on Z such that £XZΓ = 0 and £XZΠ = Γ ∧ XZ. This correspondence is
determined by

{σ, σ′}aJ ◦ ζ = {Fσ,Fσ′ }J . (36)

Proof. We will prove only part (2). The proof of (1) is analogous but easier. Since all objects
are local overM, we can use local affine coordinates(xa, s) on Z in whichXZ = −∂s and
identify sectionsσ of Z with functionsσ(x), so thatFσ(x, s) = σ(x)− s. We will identify
functions onM with basic functions onZ. Assume first that{·, ·}aJ is an aff-Jacobi bracket
onSec(Z). According toTheorem 21there is a Jacobi structureJ0 = (Π0, Γ0) onM and a
first-order differential operatorD = D̊+f onM such that{σ, σ′}aJ = D(σ−σ′)+{σ, σ′}J0.
Theequation (36)can be rewritten in the form

Π0(σ, σ
′)+ σΓ0(σ

′)− σ′Γ0(σ)+ D̊(σ − σ′)+ f(σ − σ′)
= Π(σ − s, σ′ − s)+ (σ − s)Γ(σ′ − s)− (σ′ − s)Γ(σ − s),

which has a unique solutionJ = (Π, Γ), namely

Π = Π0+ ∂s ∧ (D̊− sΓ0), Γ = Γ0− f∂s.

It is easy to see that the Jacobi identity for{·, ·}aJ implies the Jacobi identity for{·, ·}J and
that this solution has the required properties with respect to £XZ .

Conversely, assume thatJ is a Jacobi structure onZ. The conditions £XZΓ = 0 and
£XZΠ = Γ ∧ XZ imply that £XZ({(σ − s), (σ′ − s)}J ) = 0, i.e.{(σ − s), (σ′ − s)}J is a
basic function, so that(21) defines a bracket onSec(Z). It is easy to see that this bracket
is an aff-Jacobi bracket. �

Note, that every skew-symmetric affine bracket{·, ·} is uniquely determined by{σ, ·}2v,
namely

{σ, σ′} = {σ, σ′ − σ}2v. (37)

For an aff-Poisson bracket on sections ofZ the mappingf �→ {σ, f }2v is a derivation of
the algebraC∞(M), hence a vector field onM. We denote it byXσ and we call it the
Hamiltonian vector fieldof σ.

Example 5. The canonical Poisson structureΠ on the cotangent bundleT∗M is invariant
with respect to translation by the vertical liftαT∗M of any closed one-formα ∈ Sec(T∗M).
If α is nowhere-vanishing, we can consider the corresponding AV-bundleZ = AV(T∗M) for
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whichXZ is the vertical lift ofα, i.e.XZ = αT∗M . Hence, the AV-bundleZ, i.e.ζ : T∗M →
T∗M/〈α〉, carries a canonical aff-Poisson structure with the bracket(35). Since, for any
sectionσ of Z and for any functionf onT∗M/〈α〉, we have({σ, f }aP)

2
v ◦ ζ = {Fσ, f ◦ ζ}Π ,

the Hamiltonian vector fieldXσ on T∗M/〈α〉 induced by the sectionσ is the projection of
the Hamiltonian vector field onT∗M induced byFσ .

In the theory of Lie algebroids it is well-known that a Lie algebroid brackets [·, ·] on the
vector bundleE are in a one-to-one correspondence with linear Poisson brackets{·, ·} on
E∗. Linearity of the bracket means that the bracket of linear functions is a linear function
and the correspondence is described by

{ιE∗(X1), ιE∗(X2)} = ιE∗([X1, X2]),

whereιE∗(X) denotes the linear function onE∗ associated canonically withX ∈ Sec(E).
In [3] it has been shown that this correspondence can be extended to a one-to-one corre-
spondence between Lie algebroid brackets onE and affine Jacobi brackets (bracket of affine
functions is an affine function) on an arbitrary affine hyperbundleA of E∗. In the case of
special affine bundles we have an analogous correspondence which refers toTheorem 13.

Let A = (A, v0) be a special affine bundle overM. There is an obvious identification of
a sectionX of V(A) with a linear functionιA†(X) on A† and an affine functionιA#(X) on
A# which are invariant with respect to translation by 1A, so they are pull-backs of a certain
linear functionι†X and an affine functionι#X on A†/〈1A〉 andA#/〈1A〉, respectively.

Theorem 23 (Grabowska et al.[2]). There is a one-to-one correspondence between Lie
affgebroid brackets[·, ·]A on a special affine bundleA and

(1) linear aff-Poisson brackets{·, ·}A† on the AV-bundleAV(A†), i.e. on ρ† : A† →
A†/〈1A〉, determined by

ι
†
[a,a′]A

= {σ̂a, σ̂a′ }A†, (38)

(2) affine aff-Jacobi brackets{·, ·}A# on the AV-bundleAV(A#), i.e. onρ : A# → A#/〈1A〉,
determined by

ι#[a,a′]A
= {σa, σa′ }A#. (39)

This aff-Jacobi bracket is aff-Poisson if and only if the sectionv0 is central in the Lie
algebroid hullÂ of A.

Remark. Here we call an aff-Poisson (resp., aff-Jacobi) structure linear (resp., affine) if
the bracket of linear sections ofρ† : A† → A†/〈1A〉 (resp., the bracket of affine sections
of ρ : A# → A#/〈1A〉) is a linear function onA†/〈1A〉 (resp., it is an affine function on
A#/〈1A〉).

Proof. Part (1) has been proved in[2], Theorem 19, so [·, ·]A induces certain aff-Poisson
bracket{·, ·}A†. According toTheorem 22, there is a Poisson tensorΠ on A† which corre-
sponds to the aff-Poisson bracket{·, ·}A†. This tensor is, clearly, linear and it is invariant with
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respect to the vector fieldX† = (1A)A†—the vertical lift of the section 1A. Now, we use the
result[3], Corollary 3.6, which implies that there is a one-to-one correspondence between
linear Poisson brackets{·, ·}Π on A† and affine Jacobi brackets{·, ·}J on A# such that

{u, v}Π |A# = {u|A#, v|A#}J
for all linear functionsu, v onA†. The Jacobi structureJ = (Π0, Γ0) is the restriction to
A# of the Jacobi structure(Π+Γ ∧∆A†, Γ), whereΓ = {v0, ·}Π is the Hamiltonian vector
field of the linear functionιA†(v0) ∈ Sec(V(A)) which defines the affine hyperbundleA#

in A† and∆A† is the Liouville (Euler) vector field on the vector bundleA†. The crucial
point is thatX† preservesΠ if and only if it preservesΓ and

£X†(Π + Γ ∧∆A†) = Γ ∧X†. (40)

Indeed, since the vector fieldX† preservesΠ, and the functionιA†(v0) due to the fact that
X†(ιA†(v0)) is the pull-back of〈1A, v

0〉 = 0, it preserves alsoΓ , i.e. £X†Γ = 0. Moreover,
sinceX† is a vertical lift, £

X†∆A† = X†. Thus we get(40) and, due toTheorem 23(b),

we get an aff-Jacobi bracket{·, ·}A# on AV(A#). It is easy to see that it satisfies(39). The
converse is proved by a similar reasoning in reversed order. Passing to the restrictions toA#

we get, in view of(22), thatJ corresponds to an aff-Jacobi bracket on sections ofρ. Since
F†
σ̂a
|A# = F#

σa
, the theorem is proved. �

Example 6. The canonical Lie affgebroid structure onZ given by [σ, σ′] = (σ′−σ) induces
an aff-Poisson structure on the AV-bundleAV(Z†) and an aff-Jacobi structure onAV(Z#) =
Z. The corresponding linear Poisson structure onZ† (resp., affine Jacobi structure onZ) is
Π = ∆Z† ∧XZ (resp.,J = (0, XZ)).

Example 7. Consider the Lie algebroid structure onT̃Z as a Lie affgebroid structure on
the special affine bundle (in fact, special vector bundle). The special affine dual(T̃Z)#

is PZ×aI, soAV((T̃Z)#) is the trivial AV-bundle overPZ. The corresponding aff-Jacobi
bracket onPZ×aI is the aff-Poisson bracket induced from the canonical Poisson structure
onPZ associated with the canonical symplectic structure.

Example 8. Recall that we have the identification̄TZ = T̃Z �M Z = (PZ)† �M Z,
so that, according toTheorem 5, (T̄Z)# = PZ×a

MZ#. The corresponding AV-bundle is
ρ : PZ×a

MZ̄# → PZ. ButPZ×a
MZ̄# = PZ×a

MZ = CZ, so thatAV((T̄Z)#) = AV(CZ).
The special affine bundlēTZ is canonically a Lie affgebroid, so, due to the above theorem,
AV(CZ) is equipped with a canonical aff-Jacobi structure. It is easy to guess that this
is the structure corresponding,via Theorem 22, to the canonical Jacobi bracket(27) on
CZ associated with the canonical contact form which, in turn, is represented by the affine
Liouville one-form. Indeed, let(xa, pb, s) be standard affine coordinates onCZ induced
from the Darboux coordinates inT∗M × R and let(xa, fb, β) be the coordinates in̄TZ
representing the vector field

X = fa(x)∂xa + (s− β(x))∂s ∈ Xah(Z).
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The duality between̄TZ = (PZ)† �M Z andCZ = PZ×a
MZ is given by〈(xa, fb, β),

(xa, pb, s)〉as = fapa + β − s so that ι#CZ(X)(x
a, pb, s) = fa(x)pa + β(x) − s and

σX(x
a, pb) = (xa, pb, fa(x)pa + β(x)). Since the Lie affgebroid bracket in̄TZ reads

[X,X′]T̄Z = [fa(x)∂xa + (s− β(x))∂s, f
′
b(x)∂xb + (s− β′(x))∂s]D1(Z)

=
(
fb(x)

∂f ′a
∂xb

(x)− f ′b(x)
∂fa

∂xb
(x)

)
∂xa

−
(
fa(x)

∂β′

∂xa
(x)− f ′a(x)

∂β

∂xa
(x)+ β(x)− β′(x)

)
∂s,

the corresponding Jacobi bracket onCZ is uniquely characterized by

{fa(x)pa + β(x)− s, f ′b(x)pb + β′(x)− s}J
= pa

(
fb(x)

∂f ′a
∂xb

(x)− f ′b(x)
∂fa

∂xb
(x)

)

+
(
fa(x)

∂β′

∂xa
(x)− f ′a(x)

∂β

∂xa
(x)+ β(x)− β′(x)

)
.

It is easy to check that this is exactly the Jacobi structure

J = (∂pa ∧ ∂xa + pa∂pa ∧ ∂s,−∂s),
i.e. the Jacobi structure of the contact one-formpa dxa − ds.

13. Aff-Poisson and aff-Jacobi (co)homology

Let Z be an AV-bundle overM. It is obvious that affine biderivations onZ are affine
derivations onZ with values inADer(Z), i.e. sections of the bundle

AffM(PZ; T̃Z) = HomM(P̂Z; T̃Z)) = (PZ)†⊗M T̃Z = T̃Z⊗M T̃Z.

In this picture, skew-symmetric affine biderivations are sections of∧2T̃Z. Similarly, affine
first-order bidifferential operators onZ are sections of∧2L̃Z. Since both,T̃Z and L̃Z,
are Lie algebroids, there are the corresponding Lie algebroid Schouten brackets [[·, ·]] T̃Z
and [[·, ·]] L̃Z on the Grassmann algebrasA(T̃Z) = ⊕nAn(T̃Z) = ⊕nSec(∧nT̃Z) and

A(L̃Z) = ⊕nSec(∧nL̃Z) of the vector bundles̃TZ and L̃Z, respectively. What will be
crucial here is that the Lie algebroidL̃Z possesses additionally a canonical closed ‘one-form’
φ0 inherited fromRZ (in fact,φ0 = φ1 on L̃Z) which makes it into aJacobi algebroidwith

the Schouten–Jacobi bracket [[·, ·]]φ0

L̃Z
.

Remark. The Jacobi algebroids have been introduced by Iglesias and Marrero[10] under
the namegeneralized Lie algebroidsand recognized as graded Jacobi brackets in[4,5]. For
the definitions and details we refer to these papers or to the article[9] which contains a
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brief introduction to the theory of Jacobi algebroids, the corresponding lifts of tensors and
canonical structures.

Theorem 24.

(a) Λ ∈ Sec(∧2T̃Z) represents an aff-Poisson structure onZ if and only if[[Λ,Λ]] T̃Z = 0.

(b) J ∈ Sec(∧2L̃Z) represents an aff-Jacobi structure onZ if and only if[[J,J]]φ
0

L̃Z
= 0.

In other words, aff-Poisson and aff-Jacobi structures are canonical structures for the Lie
algebroidT̃Z and the Jacobi algebroid(L̃Z, φ0), respectively.

Proof.

(a) We will use a trivialization ofZ to identify T̃Z with LM = TM⊕R and we will use the
expressionD = (X, β) ∈ Sec(LM) = X(M)× C∞(M) for sectionsD of T̃Z (see the
convention preceding(30)). The action onσ ∈ Sec(Z), identified with functions onM,
readsD(σ) = X(σ) + β. With respect to this identification, sections ofT̃Z commute
exactly as sections ofLM, i.e. (cf.(30))

[(X, β), (X′, β′)]T̃Z = ([X,X′]TM,X(β′)−X′(β)).

Since∧2T̃Z is identified with∧2(TM⊕R), elementsΛ ∈ Sec(∧2T̃Z) are of the form
Λ = Λ0 + XZ ∧ X0, whereXZ = (0,1), Λ0 ∈ Sec(∧2TM) is a bivector field onM
andX0 is a vector field onM. The bi-sectionΛ induces the bracket

{σ, σ′}Λ = {σ, σ′}Λ0 +X0(σ
′ − σ).

In view of Theorem 21this is an aff-Poisson bracket if and only ifΛ0 is a Poisson
tensor and [[X0,Λ0]]SN = 0, where [[·, ·]]SN is the Schouten–Nijenhuis bracket, i.e.
the Lie algebroid Schouten bracket forTM. But these conditions are equivalent to
[[Λ,Λ]] T̃Z = 0. Indeed, sinceXZ is a central section,

[[Λ,Λ]] T̃Z = [[Λ0,Λ0]] T̃Z + 2[[Λ0, XZ ∧X0]] T̃Z + [[XZ ∧X0, XZ ∧X0]] T̃Z

= [[Λ0,Λ0]]SN− 2XZ ∧ [[Λ0, X0]]SN,

that vanishes exactly when [[Λ0,Λ0]]SN= 0 and [[Λ0, X0]]SN= 0.
(b) Similarly as above we use an identificationL̃Z � L ⊕ R and the expressionD =

(X, β) ∈ Sec(LM ⊕M R) = D1(M) × C∞(M) for sectionsD of L̃Z. The action on
σ ∈ Sec(Z) readsD(σ) = X(σ)+β. With respect to this identification, sections ofL̃Z
commute like

[(X, β), (X′, β′)]L̃Z = ([X,X′]LM,X(β′)−X′(β)).

ElementsJ ∈ Sec(∧2L̃Z) are of the formJ = J0 + XZ ∧ D0, whereXZ = (0,1),
J0 ∈ Sec(∧2LM) is a first-order bidifferential operator onM andD0 is a first-order dif-

ferential operator onM. The Schouten–Jacobi bracket [[·, ·]]φ0

L̃Z
restricted toLM gives the
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canonical Schouten–Jacobi bracket [[·, ·]]φ0

LM on A(LM) for which canonical structures
are Jacobi structures onM (cf. [4]). The sectionJ induces the bracket

{σ, σ′}J = {σ, σ′}J0 +D0(σ
′ − σ).

This is an aff-Jacobi bracket if and only ifJ0 is a Jacobi structure and [[D0,J0]]φ
0

LM = 0

(Theorem 21). But these conditions are equivalent to [[J,J]]φ
0

L̃Z
= 0. Indeed, sinceXZ

is an ideal section such that [D,XZ]L̃Z = φ0(D)XZ, we have [[R,XZ]]φ
0

L̃Z
= XZ ∧

iφ0R for any R ∈ Sec(A(L̆Z)), and, due to the properties of the Schouten–Jacobi
brackets,

[[J,J]]φ
0

L̃Z
= [[J0,J0]]φ

0

L̃Z
+ 2[[J0, XZ ∧D0]]φ

0

L̃Z
+ [[XZ ∧D0, XZ ∧D0]]φ

0

L̃Z

= [[J0,J0]]φ
0

L̃Z
+ 2([[J0, XZ]]φ

0

L̃Z
∧D0

−XZ ∧ [[J0,D0]]φ
0

L̃Z
− iφ0J0 ∧XZ ∧D0)

= [[J0,J0]]φ
0

LM − 2XZ ∧ [[J0, X0]]φ
0

LM,

that vanishes exactly when [[J0,J0]]φ
0

LM = 0 and [[J0, X0]]φ
0

LM = 0, i.e. whenJ0
is a Jacobi structure for whichD0 acts as a derivation of the corresponding Jacobi
bracket �

Since aff-Poisson and aff-Jacobi structures have been recognized as canonical struc-
tures, we can apply results of[9] to characterize them in terms of induced morphisms of
vector bundles, and results of[4,5] to define the corresponding cohomology and homo-
logy.

For Y ∈ Sec(A(T̃Z)) denote byYc its Lie algebroid complete lift to a multivector
field on T̃Z (see[7,8] or the survey in[9]). Similarly, for Y ∈ Sec(A(L̃Z)) denote by
Ŷφ0 its Jacobi algebroid complete lift to a first-order polydifferential operator onL̃Z (see

[4] or the survey in[9]). Let ΛT̃∗Z be the canonical linear Poisson structure onT̃∗Z
representing the Lie algebroid structure onT̃Z and letJL̃∗Z be the canonical homoge-

neous Jacobi structure on the dualL̃∗Z of L̃Z representing the Jacobi algebroid structure
on L̃Z.

Theorem 25.

(i) Λ ∈ Sec(∧2T̃Z) represents an aff-Poisson structure onZ if and only if the tensors
ΛT̃∗Z and−Λc are NΛ-related, whereNΛ : T̃∗Z → T̃Z, NΛ(µm) = iµmΛ(m).

(ii) J ∈ Sec(∧2L̃Z) represents an aff-Jacobi structure onZ if and only if the first-order bid-
ifferential operatorsJL̃∗Z and−Ĵφ0 areNJ-related, whereNJ : L̃∗Z → L̃Z, NJ(ωm) =
iωmJ(m).
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Theorem 26.

(a) Λ ∈ Sec(∧2T̃Z) represents an aff-Poisson structure onZ if and only if the graded
operator ∂Λ(Y) = [[Λ,Y ]] T̃Z of degree1 on A(T̃Z) is a cohomology operator, i.e.
(∂Λ)

2 = 0.
(b) J ∈ Sec(∧2L̃Z) represents an aff-Jacobi structure onZ if and only if the graded

operators∂tJ(R) = [[J, R]]φ
0

L̃Z
+ tiφ0J ∧ R of degree1 on A(L̃Z) are cohomology

operators for allt ∈ R, i.e. (∂tJ)
2 = 0.

Proof. The implication “if” is essentially the graded Jacobi identity applied to the bracket-
ing with canonical structures. The other follows from the fact that the corresponding
Schouten and Schouten–Jacobi brackets have no central elements among 3-tensors.�

The cohomology associated to∂Λ we will call theaff-Poisson cohomology. The cohomol-
ogy associated to∂0

J (resp.∂1
J) we will call aff-Jacobi cohomology(resp.,aff-Lichnerowicz-

Jacobi cohomology).
For any Lie algebroid structure on a vector bundleE denote by £Y the corresponding Lie

differential £Y = iY ◦dE−(−1)|Y |dE ◦ iY with respect to the multisectionY ∈ Sec(∧|Y |E).
Here and further|Y | denotes the degree of the tensorY .

Theorem 27.

(a) Λ ∈ Sec(∧2T̃Z) represents an aff-Poisson structure onZ if and only if the Lie differ-
ential

£Λ = iΛ ◦ dT̃Z − dT̃Z ◦ iΛ,
which is a graded operator of degree−1 on A(T̃∗Z), is a homology operator, i.e.
(£Λ)2 = 0.

(b) J ∈ Sec(∧2L̃Z) represents an aff-Jacobi structure onZ if and only if the Jacobi-Lie
differential

£φ
0,t

J (ω) = £J(ω)+ (|ω| + t)ii
φ0J(ω)+ φ0 ∧ iJ(ω),

which is a graded operator of degree−1 on A(L̃∗Z), is a homology operator for each

t ∈ R, i.e. (£φ
0,t

J )2 = 0.

Proof. The part “if” follows from the identities (see[5])

2(£Λ)
2 = −£[[Λ,Λ]] T̃Z

and

2(£φ
0,t

J )2 = −£φ
0,t

[[J,J]]φ
0

L̃Z

.

The other part follows from the fact that passing to the Lie differentials in the algebroids in
question is injective for 3-tensors. �
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The homology associated with £Λ we will call aff-Poisson homology. The homology

associated with £φ
0,0
J we will call aff-Jacobi homology.

Aff-Poisson and aff-Jacobi structures give also rise to the corresponding triangular Lie
bialgebroids and Jacobi bialgebroids (cf.[4,10,18]). We will not go into the details here.

14. Applications

Example 9 (Tulczyjew and Urbánski [22,25]). In gauge theories potentials are interpreted
as connections on principal bundles. In the electrodynamics the gauge group is(R,+)
and the potential is a connection on a principal bundleζ : Z → M over the space–time
M, i.e. on an AV-bundleZ = (Z,1M) overM. An electromagnetic potential is a section
α : M → PZ.

According to[27], the phase manifold for a particle with the chargee ∈ R is obtained
by the symplectic reduction ofT∗Z with respect to the coisotropic submanifold

Ke = {p ∈ T∗Z : 〈p,XZ〉 = −e}.
Let us denote byPeZ the reduced phase space. It is easy to see that it is an affine bundle
modeled onT∗M. We show thatPeZ is the phase bundle for certain special affine bundle
Ze.

First, letY = Z×aI be the trivial AV-bundle overZ. We define anR-action onY by the
formula

(Z × R)× R � ((z, r), t) �→ (z+ t, r + te) ∈ Z × R = Y.

The space of orbits is an affine bundle modeled onM × R and denoted byZe. We denote
by ζe the canonical projectionZe → M. The distinguished section ofV(Y) (the function
1Z) projects to the constant function 1M and the canonical projectionλe : Y → Ze is a
morphism of special affine bundlesY → Ze = (Ze,1M). The inducedR-action onZe has
the form

λe(z, r)+ s = λe(z, r + s) = λe(z+ t, r + s+ te).

For e = 0 the bundleZe is trivial: Z0 = M × R and fore != 0 we have a diffeomorphism

Φe : Z→ Ze, : z �→ λe(z,0).

The diffeomorphismΦe is an isomorphism of the special affine bundle(Z,−(1/e)1M) onto
Ze:

Φe

(
z− 1

e
r

)
= λe

(
z− 1

e
r,0

)
= λe(z, r) = λe(z,0)+ r = Φe(z)+ r.

In particular,Z−1 = Z andZ1 = Z̄. To put it simpler, let us observe that, according to
[2, Example 3], Ze is just the level-set of 1Z in Ẑ associated with value−e. The diffeomor-
phismΦe comes just from the homotety by−e in Ẑ.
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Let σ be a section ofζe. The functionλ∗eσ on Z has the property

XZ(λ
∗
eσ) = −e.

We conclude that the induced byλe relationPY → PZe is the symplectic reduction with
respect to a coisotropic submanifold

Ke = {p ∈ T∗Z : 〈p,XZ〉 = −e}.
Thus the phase manifoldPeZ for a particle with the chargee is the phase bundle for
the special affine bundleZe. Another way to see this is to use the decompositionT∗Z =
T̃∗Z×MZ. The symplectic reduction in question is the reduction with respect to the moment
map for the phase lift of the canonicalR-action onZ, i.e.

PeZ = {[αzm ] ∈ T̃∗Z : 〈αzm,XZ(zm)〉zm = −e}.
But 〈αzm,XZ(zm)〉zm = −e is equivalent to〈αzm,−(1/e)XZ(zm)〉zm = 1 that is a form of a
definition ofPZe. That the symplectic structure onPZ, defined originally as the pull-back
from T∗M when a section ofZ is chosen, coincides with the one reduced fromT∗Z can be
easily checked in the given trivialization.

The isomorphismΦe gives a one-to-one correspondence between sections ofζ and sec-
tions ofζe, for e != 0. It follows that a chosen section ofζ provides a trivialization ofZ and
also ofZe. In such trivializations, a sectionσ of ζ and the corresponding sectionΦe ◦ σ of
ζe are functions onM related by the formula

Φe ◦ σ(m) = −eσ(m).
The correspondenceσ → Φe◦σ of sections projects to a correspondence of affine covectors
and consequently gives a correspondence of affine one-forms. Letα be a section ofPζ :
PZ → M andαe be the corresponding section ofPζe. In a given trivialization, the sections
α andαe are one-forms related by the formulaαe = −eα.

The Lagrangian of a relativistic charged particle is a sectionLe of the bundleT̃ζa :
T̃Ze → TM over the open setC = {v ∈ TM : g(v, v) > 0} given by the formula

Le(v) = 〈αe, v〉 +m
√
g(v, v),

whereg is the metric tensor on the space–timeM,m is the mass of the particle, and〈αe, v〉 =
αe(v), where an element ofPZe is interpreted as a linear section ofT̃ξe : T̃Ze → TM,
i.e. as an element ofLS(T̃Ze). In this example Lagrangians are sections of an AV-bundle.
Hamiltonians are ordinary functions but not on a cotangent bundle but on the affine phase
bundlePZe.

Example 10 (Urbánski, cf. [24]). The space of events for the inhomogenous formulation
of time-dependent mechanics is the space–timeM fibrated over the timeR. First-jets of
this fibration form the infinitesimal (dynamical) configuration space. Since there is the
distinguished vector field∂t on R, the first-jets of the fibration over time can be identified
with those vectors tangent toM which project on∂t . Such vectors form an affine subbundle
A of the tangent bundleTM modeled on the bundleVM of vertical vectors. The Lagrange
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formalism in the affine formulation originates on the AV-bundleA×aI → A and the
Lagrangians are ordinary functions onA. The Hamilton formalism now takes place not on
the dual vector bundleV∗M of VM, as in the classical approach, but on the dual AV-bundle
ζ : (A×aI)# = A† → V∗M which can be recognized asζ : T∗M → T∗M/〈dt〉 and which
carries a canonical aff-Poisson structure induced from the canonical symplectic Poisson
bracket onT∗M (cf. Example 5). The Hamiltonians are sections of this bundle. To compare
with the standard approach, let us assume that we have a decompositionM = Q × R of
the space–time into a product of space and time. This induces the decompositionT∗M =
T∗Q×T∗R. Sectionsσ of ζ can be identified with functions (time-dependent Hamiltonians)
H = H(α, t) onV∗M = T∗Q×R byσH(α, t) = (α, t,−H(α, t)dt). The dynamics induced
by the sectionσH is, as inExample 5, the projection of the dynamics onT∗M induced byFσH .
The distinguished section ofT∗M is dt, so that the distinguished section in the AV-bundle
ζ is represented by−dt. Thus,

FσH (α, t, p) = H(α, t)+ p,

where(t, p) are the standard Darboux coordinates inT∗R. The Hamiltonian vector field of
FσH on T∗M is thereforeXHt + ∂t , whereXHt is the Hamiltonian vector field ofHt(x) =
H(x, t) on T∗Q, so we have recovered the correct dynamics. However, in our picture, the
term ∂t is not added ‘by hand’ but it is generated fromσH by means of the aff-Poisson
structure. Of course, if we have no decomposition into space and time, there is no canonical
∂t onM and nothing canonical can be added by hand in the standard approach. This problem
disappears in the aff-Poisson formulation. In this example, Hamiltonians are sections of an
AV-bundle and Lagrangians are ordinary functions however not on a vector but on an affine
bundle.

Example 11. The last example is devoted to a Hamiltonian formulation of dynamics of
one massive particle in the Newtonian space–time (cf.[6,11]). Even in a fixed inertial
frame, up to now, there was no satisfactory description of the dynamics in the Hamiltonian
formulation. First, we would like to present difficulties that appear while constructing the
description for the dynamics in an inertial frame and then we will show the solution in the
language of AV-geometry.

LetN be the Newtonian space–time i.e. a four-dimensional affine space equipped with a
covectorτ being an element of the dual of the model vector spaceV(N) and an euclidean
metricsg on the kernel ofτ. The covectorτ is used for measuring time intervals between
events and the metrics measures spatial distance between simultaneous events. We will
denote the kernel ofτ by E0 and the level-1 set ofτ by E1. The vector spaceE0 is of
course a vector subspace ofV(N) andE1 is an affine subspace ofV(N) modeled onE0.
The elements ofE1 are physical velocities of particles. On the other hand, every element of
E1 represents a class of inertial observers moving in the space–time with the same constant
velocity. Such class of observers will be called an inertial frame. The configuration space
for one massive particle isN × E1. Having an inertial frameu, we can identify the affine
subspaceE1 with its model vector space, the phase space is generally accepted to beN×E∗0.
The correct phase equations for the potentialϕ are:
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ẋ = g−1
( p
m

)
+ u, (41)

ṗ = −dsϕ(x), (42)

where(x, p, ẋ, ṗ) is an element ofT(N×E∗0) that can be identified withN×E∗0×V(N)×E∗0.
The subscript in ds means that we differentiate only in the spatial directions, i.e. vertical
with respect to the projection on time.

The standard Hamiltonian description is based on the fact thatN × E∗0 is a Poisson
manifold with the Poisson structure being reduced from the canonical Poisson structure of
T∗N � N × V(N)∗. The problem is that from the Hamiltonian

hu(x, p) = 1

2m
〈p, g−1(p)〉 + ϕ(x)

we obtain the vector field which is vertical with respect to the projection on time:

ẋ = g−1
( p
m

)
, ṗ = −dsϕ(x).

Any vertical vector field cannot be a physical motion, so we have to add ‘by hand’ the
constant vector fieldu. As in the previous example, this problem can be solved by replacing
the Poisson structure on the phase manifold by an affine Poisson structure. However, the
equations of motion as well as the affine Poisson structure depend on the choice of the
reference frame.

To get frame-independent formulation for the dynamics, let us consider first frame-
dependent LagrangianPu. It is a function defined onN × E1

Pu(x, v) = 1
2m〈g(v− u), v− u〉 − ϕ(x).

Let us look at the solution of this problem. Ifu andu′ are two inertial frames then the
difference

fu,u′(v) = Pu(x, v)− Pu′(x, v) = m
〈
g(u′ − u), v− 1

2(u+ u′)
〉

is an affine function onE1. Now we define an equivalence relation∼P in the setE1×E1×R

by

(u, v, r) ∼P (u
′, v′, r′)↔ v = v′, r = r′ + fu,u′(v).

The set of equivalence classes for∼P will be denoted byA0. We observe that sincefu,u′ is
an affine function,A0 is an affine space of dimension 4. There is a projection fromA0 to
E1. The model vector space forA0 is (E1×E0×R)\ ∼vP, where the equivalence relation
∼vP is in a sense the linear part of∼P: we say that two elements(u,w, r) and(u′, w′, r′) of
E1× E0× R are equivalent if

w = w′, r = r′ +m〈g(u− u′), w〉.
In V(A0) we distinguish an elementw0 = [u,0,1] so nowA0 = (A0, w0) is a special
affine space andA = N × A0 is a special affine bundle overN. The mapping

(x, v) �→ (x, [u, v, Pu(x, v)])



444 K. Grabowska et al. / Journal of Geometry and Physics 52 (2004) 398–446

is a section ofAV(A) and can be understood as frame-independent Lagrangian. Note that it
is no longer a function but a section of an AV-bundle. Any section ofA can be represented
in the form

x �→ X̃(x) = [u,X(x), r(x)],

whereX is a vector field onN with values inE1 andr is a function onN. We define a
bracket on sections ofA by the following formula

[X̃, Ỹ ] = [u, [X, Y ],Xs− Yr],

whereX̃(x) = [u,X(x), r(x)] and Ỹ (x) = [u, Y(x), s(x)]. The definition is correct. In-
deed, if we have other representativesX(x) = [u′, X(x), r(x) − fu,u′(X(x))] andY(x) =
[u′, Y(x), s(x) − fu,u′(Y(x))], then, sincefu,u′ is affine,(£X(x)(fu,u′ ◦ Y))(x) = (fu,u)v ◦
(£X(x)Y)(x), where £X(x) is the directional derivative in the directionX(x) and(fu,u′)v is
the vector part offu,u′ . Moreover,(£X(x)Y − £Y(x)X)(x) = [X, Y ](x), so that we get

X(r − fu,u′ ◦ Y)− Y(s− fu,u′ ◦X) = X(r)− Y(s)− (fu,u′)v ◦ [X, Y ],

that proves the correctness of the definition.
Having two vector fieldsX, Y with values inE1 we have

0= (dτ)(X, Y) = X〈τ, Y〉 − Y〈τ,X〉 + 〈τ, [X, Y ]〉.
SinceX〈τ, Y〉 = Y〈τ,X〉 = 0 we obtain that〈τ, [X, Y ]〉 = 0, i.e. [X, Y ] ∈ E0. The bracket
of two sections ofA is therefore a section ofV(A) and it is easy to see that it is a Lie
affgebroid bracket with the anchor morphismγ : A → TN defined asγ([u,X, r]) = X.
Moreover, the sectionw0 is central for the bracket, i.e. [X̃, w0]2v = 0 for allX. Therefore,
according to theTheorem 23, we have that the corresponding aff-Jacobi bracket on the
AV-bundleAV(A#) is aff-Poisson. We claim that this structure is the correct structure for
generating the equations of motion for the Hamiltonian formulation of the dynamics in
question.

Indeed,A# is by definitionAff(A, I). Like in the Lagrangian case, we will represent it
as the set of cosets of an appropriate equivalence relation. In the spaceE1 × E∗0 × R we
define an equivalence relation∼h by

(u, p, s) ∼h (u
′, p′, s′)↔ p = p′ +mg(u− u′),

s = s′ + 〈p, u− u′〉 + 1
2m〈g(u− u′), u− u′〉.

An equivalence class [u, p, s] represents an affine functionξ[u,p,s] onA0 given by

ξ[u,p,s]([u, v, r]) = 〈p, v− u〉 + s− r.

Its linear part(ξ[u,p,s])V([u,w, r]) = 〈p,w〉−r gives−1 while evaluated onw0. The model
vector space forA#

0 is V(N)∗ with distinguished elementτ. We have:

[u, p, s] + π = [u, p+ ι(π), s+ 〈π, u〉],
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whereι is the canonical projection fromV(N)∗ on E∗0. Let us denote byP the space of
affine momenta, i.e. the spaceE0× E∗0/ ∼P for the relation

(u, p) ∼P (u′, p′)↔ p = p′ +mg(u− u′).

We observe thatAV(A#) is an AV-bundle overN×P . The frame-independent Hamiltonian
is a section ofAV(A#):

(x, [u, p]) �→ h((x, [u, p]) = (x, [u, p, hu(x, p)]).

Using the canonical aff-Poisson structure onAV(A#) we can generate out ofh an affine
derivation ofAV(A#), i.e. the section of̃T(AV(A#)). This section projects to a vector field
onN × P that is understood as the equation of motion.

Now, let us calculate the equations of motion in coordinates. For, we choose an inertial
frameu and the coordinates(x0, xi), i = 1,2,3 such that∂0 = u. By (pi) we denote the
adapted coordinates onE∗0. Using the inertial frame we have the following identifications:

A0 � E1× I, A � N × E1× I, A# � N × E∗0 × I,

Sec(AV(A#)) � C∞(N × E∗0).

The bracket of sections ofN×E1×R, has the obvious form [(X, ξ), (Y, ϑ)] = ([X, Y ], Xϑ−
Yξ). If the sections take values inE1 then the bracket takes values inE0. The affine function
onN × E∗0 that corresponds to the section(X, ξ) is

ι(X,ξ)(x, p) = 〈p,X〉 − ξ.

The Poisson bracket for functions corresponding to sections(X, ξ), (Y, ϑ) is given by the
formula

{ι(X,ξ), ι(Y,ϑ)} = ι[(X,ξ),(Y,ϑ)] = 〈p, [X, Y ]〉 −Xϑ + Yξ,

which in coordinates reads

{ι(X,ξ), ι(Y,ϑ)} = piX
j∂jY

i − piY
j∂jX

i + pi∂0Y
i − pi∂0X

i −Xi∂iϑ

−∂0ϑ + Yi∂iξ + ∂0ξ.

From the above formula we obtain that

{h, ·} = (∂jh)∂j + ∂0− (∂jh)∂
j − ∂0h.

The vector part of the above operator is exactly what we had in(41) and (42). In this example
both, Hamiltonians and Lagrangians are sections of AV-bundles and not ordinary functions.
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